首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
K. Izumi  S. Aso  M. Nishida 《Shock Waves》1994,3(3):213-222
This paper describes experimental and numerical studies of the focusing process of shock waves reflected from various shapes of a parabolic reflector. The effect of incident shock strength on the focusing process was also investigated. Experiments were carried out in a conventional shock tube and a test gas was air for incident shock Mach numbers ranging from 1.1 to 2.0. In the experiments, the process of shock focusing was visualized by schlieren method. Numerical simulations were conducted for incident shock Mach numbers up to 3.0 by solving the two-dimensional unsteady Euler equations. The numerical results were compared with experiment for various parabolic reflector shapes and for various incident shock Mach numbers. Based on the experimental and computational results, the pattern of shock focusing and shock focusing mechanism are discussed.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

3.
4.
5.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 134–143, March–April, 1991.  相似文献   

6.
A stability criterion is obtained for a low-voltage arc in the absence of ionization equilibrium. It is shown that the stability depends on the properties of the generation function. The example of a cesium arc of a thermionic converter illustrates the influence of a change of the electron temperature on the stability of a plasma.  相似文献   

7.
8.
9.
Consider impulsive processes that consists of between two impulses non-autonomous, non-linear continuous processes subjected to time-varying impulsive constraints. By extending compact processes defined by Dafermos for non-autonomous systems without impulses, a class of regular impulsive processes is provided and its applications are stressed by selected examples. A weak invariance principle and an invariance principle are established for the regular impulsive processes. The paper thus lays ground work for geometric theory of general impulsive processes.  相似文献   

10.
11.
Summary An expression is derived of Townsend's ionization coefficient in terms of electric field and pressure, which fits the experimental data for air in the rangeE/p=10 to 103 Volts/cm×mm Hg.This work was supported by the U.S. Air Force through the Propulsion Division, Directorate of Engineering Sciences, Office of Aerospace Research, AFGLR, under contract AF 49 (638) - 1445.  相似文献   

12.
13.
The mechanism of precursor ionization ahead of strong shock waves has been studied in a low density shock tube. The experimental results are illustrated with Arrhenius plots with kink points dividing them into two parts with apparent activation energy ratio 1:2, namely with the values 7.7 eV and 15.3 eV, and varying with first and third power of the density respectively. A model is proposed to interpret the facts where the process taking place in the precursor region, is a two step photo ionization accompanied with the drift flow effect of the gas relative to the shock wave or the ionization recombination effect according to whether the shock speed and initial density are low enough. The product of the A-A collision excitation cross section coefficientS * multiplied by the radiation cross sectionQ * of ArgonS *×Q *=1×10−36 (cm4eV−1) and the three body recombination coefficient of Argon at room temperaturek ra =1×10−24 (cm−6s−1). The project supported by the National Natural Science Foundation of China  相似文献   

14.
15.
16.
17.
A semi-analytic model is developed to estimate continuum lowering in dense plasmas including fluctuations. The model is applied to aluminum and compared with recent experiments at the Linac Coherent Light Source [O. Ciricosta et al., Phys. Rev. Lett. 109 (2012) 065002] that reported the ionization potential depression of K-shell electrons in solid density aluminum at temperatures up to 180 eV. The analysis suggests fluctuations, which are neglected in most continuum lowering models but are essential to describe energy absorption by a system, are sufficiently large to impact the interpretation of the experimental results.  相似文献   

18.
19.
Mandelbrot and Julia sets are examples of fractal patterns generated in the complex plane. In the literature, we can find many generalizations of those sets. One of such generalizations is the use of switching process. In this paper, we introduce some switching processes to another type of complex fractals, namely polynomiographs. Polynomiograph is an image presenting the visualization of the complex polynomial’s root finding process. The proposed switching processes will be divided into four groups, i.e., switching of: the root finding methods, the iterations, the polynomials and the convergence tests. All the proposed switching processes change the dynamics of the root finding process and allow us to obtain new and diverse fractal patterns.  相似文献   

20.
An analytical model was developed for describing the performance of packed-bed enzymic reactors operating with two cosubstrates, and when one of the reaction products is inhibitory to the enzyme. To this aim, the compartmental analysis technique was used. The relevant equations obtained were solved numerically, and the effect of the main operational parameters on the reactor characteristics were studied.Notation C infa,i sup* local concentration of products in the pores of stage i - C j,i concentration of substrate j in the pores of stage i - D infa sup* internal (pore) diffusion coefficient for the reaction product a - D j internal (pore) diffusion coefficient of substrate j - J infa,i sup* net flux of product a, taking place from the pores of stage i into the corresponding bulk phase - J j,i net flux of substrate j, taking place from the bulk phase of stage i into the corresponding pores - K b inhibition constant - K m,1, K m,2 Michaelis constants for substrate 1 and 2, respectively - K q inhibition constant - n total number of elementary stages in the reactor - Q volumetric flow rate throughout the reactor - R j,i, R infa,i sup* local reaction rates in pores of stage i, in terms of concentration of substrate j and product a respectively - S infa,i sup* , S infa,i-1 sup* bulk concentration of the reaction product a, in the stages i and i — 1, respectively - S j,0 concentration of substrate j in the reactor feed - S j,i-1, S j,i concentration of substrate j in the bulk phase leaving stages i — 1 and i, respectively - V total volume of the reactor - V m maximal reaction rate in terms of volumetric units - y axial coordinate of the pores - y 0 depth of the pores - * dimensionless parameter, defined in Equation (22) - 1 dimensionless parameter, defined in Equation (6) - 2 dimensionless parameter, defined in Equation (6) - 1 dimensionless parameter, defined in Equation (6) - 2 dimensionless parameter, defined in Equation (6) - * dimensionless parameter, defined in Equation (22) - 1 dimensionless parameter, defined in Equation (6) - 2 dimensionless parameter, defined in Equation (6) - * dimensionless parameter, defined in Equation (22) - * dimensionless parameter, defined in Equation (22) - volumetric packing density of catalytic particles (dimensionless) - porosity of the catalytic particles (dimensionless) - V infi sup* dimensionless concentration of reaction product in pores of stage i, defined in Equation (17) - j,i dimensionless concentration of substrate j in pores of stage i; defined in Equation (6) - j,i-1, j.i dimensionless concentration of substrate j in the bulk phase of stage i; defined in Equation (6) - dimensionless position along the pore; defined in Equation (6)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号