首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Severe thermal pretreatment of gold wire electrodes in an inert gas atmosphere resulted in the appearance of dramatic premonolayer oxidation responses, which in some instances commenced at 0.25 V (RHE), for the resulting active gold electrodes in aqueous acid media. Similar behaviour was reported earlier for platinum and gold activated by cathodic pretreatment in acid solution; these active noble metal surfaces are evidently more susceptible to oxidation than bulk copper. Such behaviour was attributed to the effect of surface disorder; many of the metal atoms at the interface are assumed to be in a very active, metastable state possessing quite low lattice stabilization energy. Premonolayer oxidation responses are again correlated with electrocatalytic behaviour and the existence of unusual chemisorption behaviour for molecules reacting at highly active states of metals is outlined. Electronic Publication  相似文献   

2.
The cyclic voltammetry behaviour of gold in aqueous media is often regarded in very simple terms as a combination of two distinct processes, double layer charging/discharging and monolayer oxide formation/removal. This view is questioned here on the basis of both the present results and earlier independent data by other authors. It was demonstrated in the present case that both severe cathodization or thermal pretreatment of polycrystalline gold in acid solution resulted in the appearance of substantial Faradaic responses in the double layer region. Such anamolous behaviour, as outlined recently also for other metals, is rationalized in terms of the presence of active metal atoms (which undergo premonolayer oxidation) at the electrode surface. Such behaviour, which is also assumed to correspond to that of active sites on conventional gold surfaces, is assumed to be of vital importance in electrocatalysis; in many instances the latter process is also quite marked in the double layer region. Received: 26 July 1999 / Accepted: 7 September 1999  相似文献   

3.
Four low-level redox responses, attributed to the involvement of four different types of active surface state (or site) transitions, were observed within the double layer region in the case of polycrystalline silver electrodes in base; there is now independent evidence for such premonolayer behaviour in data reported by other authors. The potentials for each of these transitions were correlated with the onset/termination potentials of different electrocatalytic processes, usually for oxidations or reductions but in some cases for both types. The data obtained are in good agreement with the IHOAM model of electrocatalysis which was outlined earlier for the other Group 11 metals, gold and copper. Electronic Publication  相似文献   

4.
The present work is a continuation of an earlier investigation of the effect of severe thermal pretreatment on the redox properties of platinum electrodes in aqueous media. The most interesting observation was that raising the solution temperature to ca. 75 °C resulted in a dramatic anodic response in the positive sweep at ca. 0.25 V (RHE). Such behaviour was noted earlier at room temperature but only when the thermally pretreated sample was further activated by cathodic polarization. This transition at 0.25 V was partially reversed on the negative sweep, but the cathodic process involved was subject to severe inhibition. There is independent evidence for similar behaviour for gold in aqueous acid solution. The relevance of the present results to the operation of fuel cell anodes is outlined. Received: 2 December 1999 / Accepted: 24 February 2000  相似文献   

5.
钯材料广泛用于氢同位素储存和分离、催化和传感等领域.传统的负载钯催化材料具有优异的乙醇和甲醇等电化学催化氧化性能.除此之外,负载钯催化材料还具有优异的甲烷催化燃烧性能.然而,很多研究显示负载钯催化材料存在很多不足,例如在工程应用过程中不稳定,纳米颗粒会发生聚集和长大,进而引起材料性能急剧下降等.不同于钯片、海绵钯粉末和负载钯催化材料,多孔钯具有三维连通的孔隙结构,可避免团聚现象的发生.同时,多孔钯还具有一些特殊的物理化学性能.研究表明,梯度孔隙结构是一种高效的电化学催化结构.因而近年来很多研究者都致力于探索具有高孔隙率和梯度孔隙结构多孔钯块材的制备方法.已有的研究包括造孔剂法和模板法等,但上述方法制得的多孔钯块材均存在比表面积低或难以获得块体材料缺点.我们研究组发展了一种制备兼具高孔隙率和梯度孔隙结构的多孔钯块材的新方法.即通过以一定粒度的NaCl颗粒作为造孔剂放电等离子烧结制备PdAl合金复合块材,然后通过去离子水溶解获得多孔PdAl合金,最后经过在盐酸溶液中去合金化得到具有数十微米的宏观大孔和约10纳米的纳米孔等梯度孔隙结构的多孔钯块材.当造孔剂添加量为20 vol.%,制得了孔隙率高达88%且完整的多孔钯块材.对该多孔钯块材的力学性能进行了测试,其压缩强度为0.5 MPa.对该块材进行氮吸附测试,测试结果显示其比表面积达到54 m2/g.我们进一步对该多孔钯块材的乙醇电化学催化氧化性能进行了研究.对不同扫描速度下多孔钯块材在KOH(1 mol/L)+乙醇(0.8 mol/L)溶液中电催化活性进行分析.随着扫描速率从10 mV/s提高到50 mV/s,正扫描峰电流密度也逐渐提高,且峰电位向正电位方向移动.对峰电流密度和扫描速率的平方根进行拟合,发现它们之间存在明显的线性关系,表明该电催化氧化行为是一个受扩散控制的过程.随着溶液中乙醇浓度不断增加,正扫描方向乙醇氧化峰的峰电流呈现出先增大后减小的趋势.这是因为乙醇基和羟基在钯表面的竞争性吸附造成的.当乙醇浓度较高时,乙醇基会占据钯表面大量的活性位,从而阻碍和抑制羟基的吸附.此时,羟基在钯表面的吸附成为电氧化反应的控制因素.因此,只有选择合适的乙醇浓度,才能更好地发挥材料的电催化性能.当乙醇浓度为2 mol/L时,峰电流最大,达到120 mA/cm2,表明多孔钯块材具有优异的电催化性能,这与该材料的梯度孔隙结构、高比表面积和高孔隙率密切相关.进一步对多孔钯块材的催化稳定性进行研究.该多孔钯块材显示出了优异的催化稳定性,当经过50次循环后,乙醇氧化峰的峰电流仅下降到~110 mA/cm2.  相似文献   

6.
Multilayer oxide films were grown on silver in base by repetitive potential cycling; however, the type of oxide obtained, as assessed on the basis of its reduction behaviour, was dependent on the lower limit of the oxide growth cycles. Using limits of 1.03–2.60 V (RHE) the oxide film produced was assumed to be predominantly Ag2O; reduction of the latter yielded a cathodic peak at ca. 0.8 V and a surface layer of silver microparticles of diameter ranging from ca. 100 to 227 nm which, although relatively stable, were prone to rapid, extensive reoxidation. Altering the oxide growth limits to 0.7–2.60 V resulted in the growth of a different type of oxide deposit which is assumed to be AgOH; reduction of the latter occurred in a negative sweep in a random manner, i.e. in the form of cathodic spikes extending to potentials as low as ca. –0.5 V. Both types of silver oxide species are assumed to be involved in premonolayer oxidation and electrocatalysis at silver in base and the nature of the former process is discussed in some detail. Electronic Publication  相似文献   

7.
The detailed thermal characterization of Pd/TiO2–Al2O3 catalysts under oxygen and hydrogen atmosphere was conducted by means of thermal gravimetric analysis/differential scanning calorimetry (TG/DSC), temperature-programmed reduction (TPR) and temperature-programmed desorption (TPD). A simultaneous TG/DSC measurement revealed that the heat evolved during oxygen adsorption at 25 °C varied slightly with the supports and had a higher value for the smaller palladium crystallite. Hydrogen chemisorption and BET measurements revealed that the coating of Pd/Al2O3 catalysts with titania modified the support character to achieve a high dispersion of palladium. TPR and TPD characterizations of oxidized samples further demonstrated that the coating of Pd/Al2O3 catalysts with titania promoted the reduction and decomposition of PdO into palladium.  相似文献   

8.
Maria Mifsud 《Tetrahedron》2010,66(5):1040-16910
The previously described catalyst system for the aerobic oxidation of alcohols, comprising palladium(II) acetate in combination with neocuproine in a 1:1 mixture of water and a water-miscible cosolvent such as ethylene carbonate or dimethylsulfoxide, was shown to involve palladium nanoparticles as the active catalyst. The latter are formed in situ or can be preformed by reduction of the palladium-neocuproine complex with hydrogen and they are stabilized by both the neocuproine ligand and the cosolvent. This catalyst system was successfully used for the selective aerobic oxidation of the steroidal secondary alcohols, nandrolone and 5α-pregnan-3α-ol-20-one, to the corresponding ketones.  相似文献   

9.
The electrochemical quartz crystal microbalance (EQCMB) method has been used to evaluate the processes which occur in/on the palladium electrode in basic solutions. Hydrogen electrosorption in palladium is accompanied by an additional frequency shift that can be attributed to the stresses generated inside the Pd metal. A non-linear dependence between the mass change and the charge consumed during hydrogen oxidation in the Pd electrode has been found for hydrogen absorbed in the α- and β-phases. This effect precludes the objective estimation of the amount of hydrogen absorbed inside the Pd electrode. The EQCMB method has been used, however, for studying the surface electrode processes on the Pd electrode, i.e. specific anion adsorption, surface oxidation and dissolution. Also, the structure of the palladium oxide formed on the Pd surface during electrochemical oxidation is discussed in this paper and the effect of the anodic limiting potential on the oxide structure is reported. Received: 10 August 1999 / Accepted: 24 September 1999  相似文献   

10.
钯基纳米材料是甲酸电氧化反应的优良催化剂.本工作制备了两个系列钯基催化剂,并考察了聚苯胺对钯上甲酸电氧化反应的助催化作用.一种是以聚苯胺为基底,在其表面电沉积钯纳米粒子,制得nPANI/Pd催化剂(n表示聚合苯胺的循环数);另一种是直接在商业Pd/C催化剂表面电聚合苯胺,制得Pd/C/nPANI催化剂.结果显示,聚苯胺单独存在时对甲酸电氧化反应没有催化活性,但其可对钯上甲酸电氧化反应呈现明显的促进作用,且促进作用与聚苯胺的厚度(聚合循环数)密切相关.在两个系列催化剂中,15PANI/Pd和Pd/C/20PANI显示出最高的催化性能.15PANI/Pd中钯的质量比催化活性是纯钯催化剂的7.5倍; Pd/C/20PANI中钯的质量比催化活性和本征催化活性分别是商业Pd/C催化剂的2.3和3.3倍.钯催化性能的提升与聚苯胺和钯纳米粒子间的电子效应有关.  相似文献   

11.
It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes. Electronic Publication  相似文献   

12.
The thermal oxidation, at 75–92°C, of antioxidant-free low-density polyethylene (LDPE) is faster in most aqueous environments than in air. The accelerative environments include water, solutions of sodium salts, and a basic buffer. However, an acidic buffer retards oxidation. Transition metal salts are not examined here since their catalytic effect is wellknown. The acceleration is predominantly a surface phenomenon, and so is most obvious in thin polymer films. For antioxidant-containing polyolefins, complications arise because of the possibility of extraction of stabilizers, but the trend in oxidative lifetime is similar to that of the antioxidant-free specimens, and the antioxidants are observed to react chemically during the aging process. For example, a commercial crosslinked polyethylene (XLPE) shows a reduction in thermo-oxidative lifetime of at least a factor of two in aqueous environments compared to air. High-density polyethylene (HDPE) and polypropylene (PP) show similar behavior, but the magnitude of the effect of aqueous environments is less. This phenomenon is discussed in terms of nucleophilic attack by peroxy anions on hydroperoxides.  相似文献   

13.
An electrochemical preconcentration at a controlled potential on the electrode in a flow-through mode followed by graphite furnace atomic absorption spectrometric (GFAAS) detection is proposed for determination of trace amounts of palladium. After electrolysis the polarization of the electrodes was changed and deposited metal was dissolved electrochemically in the presence of an appropriate stripping reagent. Conditions for the electrodeposition, such as pH of the solutions, a deposition potential, dissolution potential and a composition of stripping solution were optimised. The graphite electrode (GE) and glassy carbon electrode (GCE) were tested for the palladium reduction process. The detection limit of 0.05 ng ml−1 Pd (1 pg) was obtained after palladium preconcentration on the GCE and dissolution with 0.2 mol l−1 thiourea in 0.1 mol l−1 HCl followed by GFAAS detection. The method was applied for the determination of palladium in spiked tap water and road dust samples.  相似文献   

14.
Rodman DL  Carrington NA  Xue ZL 《Talanta》2006,70(2):426-431
The advanced oxidation process (AOP) for the pretreatment of model palladium catalysts has been studied. Most standard metal analysis techniques are for metal ions free of organic ligands. Spent palladium catalysts contain organic ligands that need to be removed prior to analysis. AOP uses a combination of hydrogen peroxide and UV light to generate radicals that decompose such ligands, freeing up metals for further analysis. Palladium acetate Pd(OAc)2, palladium acetylacetonate Pd(acac)2, and tris(dibenzylideneacetone)dipalladium (Pd2(dba)3) were chosen as model precious metal catalysts for investigation. AOP was found to decompose ligands in Pd(OAc)2, Pd(acac)2 and give accurate Pd(II) quantification, while ligand decomposition and oxidation of Pd(0) to Pd(II) were demonstrated in treatments involving Pd2(dba)3. The effects of solubility of the palladium complexes, continuous addition of H2O2 during AOP treatments, sample pH, concentration of H2O2, and length of UV irradiation are reported.  相似文献   

15.
The goal of this study was to clarify the effect of alkaline pretreatments on the thermal decomposition and composition of industrial hemp (Cannabis sativa L.) samples. Thermogravimetric/mass spectrometric measurements (TG/MS) have been performed, on untreated, hot water washed, and alkali-treated hemp samples. The main differences between the thermal decomposition of the samples are interpreted in terms of the different alkali ion contents which have been determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) method. Principal component analysis (PCA) has been used to find statistical correlations between the data. Correlations have been obtained between the parameters of the thermal decomposition and the alkali ion content as well as the altered chemical structure of the samples. The differences in the thermal behavior of the samples are explained by the different K+ and Na+ contents and the changed structure of the hemicellulose component of the samples due to the pretreatments. The more alkali ions remain in the hemp samples after the alkali treatment, the more ash, char and lower molecular products are formed during thermal decomposition.  相似文献   

16.
The irreversible adsorption of submonolayer and monolayer coverages of palladium on Pt(111) has been investigated by means of cyclic voltammetry in sulphuric and perchloric acid. The so-called anomalous and normal hydrogen regions are always observed, irrespective of the number of palladium atoms adsorbed. However, subtle changes in the distribution of charge between the two regions and changes in their fine structure appear to contradict previous assertions concerning strongly bonded hydrogen on clean Pt(111). Depending on the electrolyte used, slight differences are also observed in the electrochemical characteristics of these features in the presence of palladium, particularly with reference to the reversibility of the peaks. This suggests that the anomalous peaks in perchloric and sulphuric acid have different origins. Coincidence of thermal Pd-O and Pt-O desorption with the anomalous peak in perchloric acid implies strongly that this feature arises from the adsorption and desorption of some oxygenated species, probably OH(ads) interacting weakly with the background electrolyte. The nature of the anomalous region in sulphuric acid is discussed in the light of these results. Finally, the role played by specifically adsorbed anions in facilitating surface mobility is again emphasised, particularly in relation to the stability of the palladium overlayer in acid media and the removal of surface heterogeneity.  相似文献   

17.
The use of heteropolyacids as a reoxidant for palladium in the direct oxidation of benzene to phenol with molecular oxygen was studied as a function of the variables involved. It was shown that the oxidation system is very effective even if a molar ratio of HOAc:H2O of 1:2 is used. After 4 h at 130°C the benzene conversion is 15% and the selectivity for phenol is above 70%. The quantity of palladium acetate can be drastically reduced allowing turnover numbers as high as 800.  相似文献   

18.
It is obtained that nano-Co3O4-coated carbon prepared by thermal decomposition of Co(NO3)2·6H2O at 300 °C on home-made Albizia procera (Roxb.) leaves derived carbon is an efficient electrocatalyst for electrochemical water oxidation in 0.1 M NaOH (aq.) solution. The loading of nano-Co3O4 on the carbon was changed by varying the amount of precursor of cobalt (100–1000 mg) and using a constant amount of the carbon (200 mg) during thermal decomposition. The prepared samples were characterized by physical techniques, including X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), thermo-gravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM), diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS). XRD, TEM, FESEM, and EDS confirmed the formation of uniformly distributed nanoparticles of single-phase Co3O4 on the surface of carbon. The XRD data reveals formation of nano-Co3O4 with average particle sizes in the range of 9–17 nm. The FESEM micrographs demonstrate that Co3O4 nanoparticles, having irregular morphology, are uniformly and densely covered on the surface of supporting carbon.. The prepared samples were immobilized on the filter paper derived carbon electrode (FPCE) to study their electrocatalytic properties toward water oxidation. The cyclic voltammetric studies showed that the nano-Co3O4-C prepared using 400 mg of Co(NO3)2·6H2O (nano-Co3O4-C-400), which possesses meso- and macropores with BET surface area of 192.4 m2/g, reaches a current density of 28 mAcm−2 at 1.5 V and electrochemical water oxidation starting potential of 0.7 V. In this work, it is also shown that the current densities, at 1.5 V, increase by increasing the amount of cobalt oxide in the prepared samples though. The nano-Co3O4-C-400 catalyst shows optimum performance for electrochemical water oxidation in terms of starting water oxidation potential, reasonable amount of Co3O4 and moderate level of current density at 1.5 V.  相似文献   

19.
It was shown for the first time that amorphous phase in an alumina support promotes the formation of palladium particles in a wide size range. This catalyst has a low selectivity to butenes in the 1,3-butadiene hydrogenation. It was suggested that surface palladium aluminates contribute to an increase in butene selectivity up to 99.5% at a hydrogenation temperature of not more than 65 °C. At higher reaction temperatures, the catalyst based on phase-homogeneous γ-Al2O3 has the highest activity and butene selectivity. This catalyst was obtained by the traditional impregnation method and contains highly dispersed palladium particles with a sufficiently high electron density. It was shown that the formation of hydride forms on palladium particles with a size of less than 1 nm was detected by temperature-programmed reduction with hydrogen.  相似文献   

20.
We report on the electrodeposition of palladium nanoparticles (PdNPs) on a glassy carbon electrode (GCE) and onto a poly‐CoTAPc‐GCE (CoTAPc=cobalt tetraamino phthalocyanine) surface. The electrodes are denoted as PdNPs‐GCE and PdNPs/poly‐CoTAPc‐GCE, respectively. PdNPs/poly‐CoTAPc‐GCE showed the best activity for the oxidation of hydrazine at the lowest potential of ?0.28 V and with the highest currents. The results were further supported by electrochemical impedance spectroscopy (EIS) which showed that there was less resistance to charge transfer for PdNPs/poly‐CoTAPc‐GCE compared to PdNPs‐GCE. The catalytic rate constant for hydrazine oxidation was 6.12×108 cm3 mol?1 s?1 using PdNPs/poly‐CoTAPc‐GCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号