首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maximum graphs with a unique minimum dominating set   总被引:2,自引:0,他引:2  
We present a conjecture on the maximum number of edges of a graph that has a unique minimum dominating set. We verify our conjecture for some special cases and prove a weakened version of this conjecture in general.  相似文献   

2.
The eternal domination number of a graph is the number of guards needed at vertices of the graph to defend the graph against any sequence of attacks at vertices. We consider the model in which at most one guard can move per attack and a guard can move across at most one edge to defend an attack. We prove that there are graphs G for which , where γ(G) is the eternal domination number of G and α(G) is the independence number of G. This matches the upper bound proved by Klostermeyer and MacGillivray.  相似文献   

3.
4.
A dominating cycle for a graph G = (V, E) is a subset C of V which has the following properties: (i) the subgraph of G induced by C has a Hamiltonian cycle, and (ii) every vertex of V is adjacent to some vertex of C. In this paper, we develop an O(n2) algorithm for finding a minimum cardinality dominating cycle in a permutation graph. We also show that a minimum cardinality dominating cycle in a permutation graph always has an even number of vertices unless it is isomorphic to C3.  相似文献   

5.
Let G=(V,E) be a graph and SV. The set S is a secure set if XS,|N[X]∩S|≥|N[X]−S|, and S is a global secure set if S is a secure set and a dominating set. The cardinality of a minimum global secure set of G is the global security number of G, denoted γs(G). The sets studied in this paper are different from secure dominating sets studied in Cockayne et al. (2003) [3], Grobler and Mynhardt (2009) [8], or Klostermeyer and Mynhardt (2008) [13], which are also denoted by γs.In this paper, we provide results on the global security numbers of paths, cycles and their Cartesian products.  相似文献   

6.
7.
A dominating set of a graph G = (N,E) is a subset S of nodes such that every node is either in S or adjacent to a node which is in S. The domatic number of G is the size of a maximum cardinality partition of N into dominating sets. The problems of finding a minimum cardinality dominating set and the domatic number are both NP-complete even for special classes of graphs. In the present paper we give an O(nE∣) time algorithm that finds a minimum cardinality dominating set when G is a circular arc graph (intersection graph of arcs on a circle). The domatic number problem is solved in O(n2 log n) time when G is a proper circular arc graph, and it is shown NP-complete for general circular arc graphs.  相似文献   

8.
9.
A note on the complexity of minimum dominating set   总被引:4,自引:0,他引:4  
The currently (asymptotically) fastest algorithm for minimum dominating set on graphs of n nodes is the trivial Ω(2n) algorithm which enumerates and checks all the subsets of nodes. In this paper we present a simple algorithm which solves this problem in O(1.81n) time.  相似文献   

10.
A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X/{v}) ? {u} is again a dominating set of G, in which case v is called a defender. The secure domination number of G is the cardinality of a smallest secure dominating set of G. In this paper, we show that every graph of minimum degree at least 2 possesses a minimum secure dominating set in which all vertices are defenders. We also characterise the classes of graphs that have secure domination numbers 1, 2 and 3.  相似文献   

11.
12.
The k-domination problem is to select a minimum cardinality vertex set D of a graph G such that every vertex of G is within distance k from some vertex of D. We consider a generalization of the k-domination problem, called the R-domination problem. A linear algorithm is presented that solves this problem for block graphs. Our algorithm is a generalization of Slater's algorithm [12], which is applicable for forest graphs.  相似文献   

13.
We investigate the complexity of several domination problems on the complements of bounded tolerance graphs and the complements of trapezoid graphs. We describe an O(n2 log5 n) time and O(n2) space algorithm to solve the domination problem on the complement of a bounded tolerance graph, given a square embedding of that graph. We also prove that domination, connected domination and total domination are all NP-complete on co-trapezoid graphs.  相似文献   

14.
We describe an algorithm for the dominating set problem with time complexity O((4g+40)kn2) for graphs of bounded genus g1, where k is the size of the set. It has previously been shown that this problem is fixed parameter tractable for planar graphs. We give a simpler proof for the previous O(8kn2) result for planar graphs. Our method is a refinement of the earlier techniques.  相似文献   

15.
《Discrete Mathematics》2019,342(4):934-942
Fricke, Hedetniemi, Hedetniemi, and Hutson asked whether every tree with domination number γ has at most 2γ minimum dominating sets. Bień gave a counterexample, which allows us to construct forests with domination number γ and 2.0598γ minimum dominating sets. We show that every forest with domination number γ has at most 2.4606γ minimum dominating sets, and that every tree with independence number α has at most 2α1+1 maximum independent sets.  相似文献   

16.
The dominating induced matching problem, also known as efficient edge domination, is the problem of determining whether a graph has an induced matching that dominates every edge of the graph. This problem is known to be NP-complete. We study the computational complexity of the problem in special graph classes. In the present paper, we identify a critical class for this problem (i.e., a class lying on a “boundary” separating difficult instances of the problem from polynomially solvable ones) and derive a number of polynomial-time results. In particular, we develop polynomial-time algorithms to solve the problem for claw-free graphs and convex graphs.  相似文献   

17.
A random recursive tree on n vertices is either a single isolated vertex (for n=1) or is a vertex vn connected to a vertex chosen uniformly at random from a random recursive tree on n−1 vertices. Such trees have been studied before [R. Smythe, H. Mahmoud, A survey of recursive trees, Theory of Probability and Mathematical Statistics 51 (1996) 1-29] as models of boolean circuits. More recently, Barabási and Albert [A. Barabási, R. Albert, Emergence of scaling in random networks, Science 286 (1999) 509-512] have used modifications of such models to model for the web and other “power-law” networks.A minimum (cardinality) dominating set in a tree can be found in linear time using the algorithm of Cockayne et al. [E. Cockayne, S. Goodman, S. Hedetniemi, A linear algorithm for the domination number of a tree, Information Processing Letters 4 (1975) 41-44]. We prove that there exists a constant d?0.3745… such that the size of a minimum dominating set in a random recursive tree on n vertices is dn+o(n) with probability approaching one as n tends to infinity. The result is obtained by analysing the algorithm of Cockayne, Goodman and Hedetniemi.  相似文献   

18.
A metric graph is a geometric realization of a finite graph by identifying each edge with a real interval. A divisor on a metric graph Γ is an element of the free abelian group on Γ. The rank of a divisor on a metric graph is a concept appearing in the Riemann-Roch theorem for metric graphs (or tropical curves) due to Gathmann and Kerber, and Mikhalkin and Zharkov. We define a rank-determining set of a metric graph Γ to be a subset A of Γ such that the rank of a divisor D on Γ is always equal to the rank of D restricted on A. We show constructively in this paper that there exist finite rank-determining sets. In addition, we investigate the properties of rank-determining sets in general and formulate a criterion for rank-determining sets. Our analysis is based on an algorithm to derive the v0-reduced divisor from any effective divisor in the same linear system.  相似文献   

19.
A clique-transversal set D of a graph G is a set of vertices of G such that D meets all cliques of G. The clique-transversal number, denoted by τ c (G), is the minimum cardinality of a clique-transversal set in G. In this paper we give the exact value of the clique-transversal number for the line graph of a complete graph. Also, we give a lower bound on the clique-transversal number for 4-regular claw-free graphs and characterize the extremal graphs achieving the lower bound.  相似文献   

20.
A well‐known formula of Tutte and Berge expresses the size of a maximum matching in a graph G in terms of what is usually called the deficiency of G. A subset X of V(G) for which this deficiency is attained is called a Tutte set of G. While much is known about maximum matchings, less is known about the structure of Tutte sets. In this article, we study the structural aspects of maximal Tutte sets in a graph G. Towards this end, we introduce a related graph D(G). We first show that the maximal Tutte sets in G are precisely the maximal independent sets in its D‐graph D(G), and then continue with the study of D‐graphs in their own right, and of iterated D‐graphs. We show that G is isomorphic to a spanning subgraph of D(G), and characterize the graphs for which G?D(G) and for which D(G)?D2(G). Surprisingly, it turns out that for every graph G with a perfect matching, D3(G)?D2(G). Finally, we characterize bipartite D‐graphs and comment on the problem of characterizing D‐graphs in general. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 343–358, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号