首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wei F  Zhang M  Feng YQ 《Electrophoresis》2006,27(10):1939-1948
A novel poly(methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction method coupled with CZE was proposed for rapidly determining a mixture of opiates comprising heroin, 6-monoacetylmorphine, morphine, codeine, papaverine, and narcotine in human urine. The extraction device contained a regular plastic syringe, the poly(MAA-EGDMA) monolithic capillary tube (530 microm id x 3 cm) and a plastic pinhead, which connected the monolithic capillary tube and the syringe without leakage. In the polymer monolith microextraction, the sample solution was ejected via the monolithic capillary tube by a programmable syringe pump, followed by desorption with an aliquot of appropriate solution, which was collected into a vial for the subsequent analysis by CZE. The best separation was achieved using a buffer composed of 0.1 M disodium hydrogen phosphate (adjusted to pH 4.5 with 1 M hydrochloric acid) and 20% methanol v/v with temperature and voltage of 25 degrees C and 25 kV, respectively. By applying electrokinetic injection with field-enhanced sample stacking, detection limits of 6.6-19.5 ng/mL were achieved. Excellent method of reproducibility was found over a linear range of 80-2000 ng/mL.  相似文献   

2.
Wei F  Fan Y  Zhang M  Feng YQ 《Electrophoresis》2005,26(16):3141-3150
A method based on in-tube solid-phase microextraction and capillary zone electrophoresis (CZE) was proposed for simultaneously determining four amphetamines (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine) in urine. A poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column, which can provide sufficient extraction efficiency, was introduced for the extraction of amphetamines from urine samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the samples were analyzed by CZE. The best separation was achieved using a buffer composed of 0.1 M disodium hydrogen phosphate (adjusted to pH 4.5 with 1 M hydrochloric acid) and 20% methanol v/v, with a temperature and voltage of 25 degrees C and 20 kV, respectively. By applying electrokinetic injection with field-amplified sample stacking, detection limits of 25-34 microg/L were achieved. Excellent method of reproducibility was found over a linear range of 0.1-5 mg/L. Determination of these analytes from abusers' urine sample was also demonstrated.  相似文献   

3.
In-tube solid-phase microextraction (SPME) based on a poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was investigated for the extraction of amphetamine, methamphetamine and their methylenedioxy derivatives. The monolithic capillary column showed high extraction efficiency towards target analytes, which could be attributed to its larger loading amount of extraction phase than conventional open-tubular extraction capillaries and the convective mass transfer procedure provided by its monolithic structure. The extraction mechanism was studied, and the results indicated that the extraction process of the target analytes was involved with hydrophobic interaction and ion-exchange interaction. The polymer monolith in-tube SPME-HPLC system with UV detection was successfully applied to the determination of amphetamine, methamphetamine and their methylenedioxy derivatives in urine samples, yielding the detection limits of 1.4 - 4.0 ng/mL. Excellent method reproducibility (RSD < 2.9%) was found over a linear range of 0.05-5 microg/mL, and the time for the whole analysis was only approximately 25 min. The monolithic capillary column was reusable in coping with the complicated urine samples.  相似文献   

4.
A hydroxylated poly(glycidyl methacrylate-co-ethylene dimethacrylate) (GMA-co-EDMA) monolithic capillary was prepared for polymer monolith microextraction (PMME). Coupled to HPLC with UV detection, this extraction medium was successfully applied to establish a simple and fast method for the analysis of clenbuterol (CLB) in urine. To obtain optimum extraction performance, the effects of pH value and ionic strength of the sample matrix on extraction efficiency were investigated. The linearity of the method was evaluated over a concentration range of 10-2000 ng/mL and the correlation coefficient (R2 value) was 0.9985. The detection limit and quantification limit were 2.3 and 7.7 ng/mL, respectively. Good reproducibility of the method was obtained, yielding the intra- and interday RSDs less than 5.1 and 9.1%, respectively. Moreover, the hydroxylated poly(GMA-co-EDMA) monolithic capillary exhibited good preparation reproducibility and long-term extraction life. When applied to the determination of CLB in urine samples, an effective removal of interfering compounds was achieved and recoveries were in the range of 87.6-106%. The determination of CLB from one real sample including pretreatment, extraction, and analysis could be finished within 30 min.  相似文献   

5.
In this study, poly(vinylphosphonic acid‐co‐ethylene dimethacrylate), poly(VPA‐co‐EDMA) capillary monolith was synthesized as a starting material for obtaining a stationary phase for microscale enrichment of phosphopeptides. The chelation of active phosphonate groups with Ti (IV) ions gave a macroporous monolithic column with a mean pore size of 5.4 μm. The phosphopeptides from different sources were enriched on Ti (IV)‐attached poly(VPA‐co‐EDMA) monolith using a syringe‐pump. The monolithic capillary columns exhibited highly sensitive/selective enrichment performance with phosphoprotein concentrations as low as 1.0 fmol/mL. Six different phosphopeptides were detected with high intensity by the treatment of β‐casein digest with the concentration of 1.0 fmol/mL, using Ti (IV)@poly(VPA‐co‐EDMA) monolith. Highly selective enrichment of phosphopeptides was also successfully carried out even at trace amounts, in a complex mixture of digested proteins (molar ratio of β‐casein to bovine serum albumin, 1:1500) and three phosphopeptides were successfully detected. Four highly intense signals of phosphopeptides in human serum were also observed with high signal‐to‐noise ratio and a clear background after enrichment with Ti (IV)@poly(VPA‐co‐EDMA) monolith. It was concluded that the capillary microextraction system enabled fast, efficient and robust enrichment of phosphopeptides from microscale complex samples. The whole enrichment process was completed within 20 min, which was shorter than in the previously reported studies.  相似文献   

6.
An on-line preconcentration method using a polymeric monolithic support is proposed for the retention of the decapeptide angiotensin I and its subsequent analysis by CZE. Monolithic capillary columns were prepared in fused-silica (FS) capillaries of 150 microm id by ionizing radiation-initiated in situ polymerization and cross-linking of diethylene glycol dimethacrylate and glycidyl methacrylate, and chemically modified with iron protoporphyrin IX (Fe-ProP). Monolithic microcolumns (8 mm long) were coupled on-line to the inlet of the separation capillary (FS capillary, 75 microm id x10 cm from the inlet to the microcolumn and 27 cm from the microcolumn to the detector). Angiotensin I was released from the sorbent by a 50 mM sodium phosphate, pH 2.5/ACN, 75:25 v/v solution and then analyzed by CZE with UV absorption detection at 214 nm. The concentration LOQ (CLOQ) was 0.5 ng/mL. The Fe-ProP-derivatized monolithic microcolumn coupled to the separation capillary exhibited a high retention capacity for peptide angiotensin I, and showed as much as 10,000-fold improvement in concentration sensitivity.  相似文献   

7.
Hordenine is an active compound found in several foods, herbs and beer. In this work, a novel sorbent was fabricated for selective solid‐phase extraction (SPE) of hordenine in biological samples. The organic polymer sorbent was synthesized in one step in the plastic barrel of a syringe by a pre‐polymerization solution consisting of methacrylic acid (MAA), 4‐vinylphenylboronic acid (VB) and ethylene glycol dimethacrylate (EGDMA). The conditions for preparation were optimized to generate a poly(MAA‐VB‐EGMDA) monolith with good permeability. The monolith exhibited good enrichment efficiency towards hordenine. By using tyramine as the internal standard, a poly(MAA‐VB‐EGMDA)‐based SPE‐HPLC method was established for analysis of hordenine. Conditions for SPE, including volume of eluting solvent, pH of sample solution, sampling rate and sample volume, were optimized. The proposed SPE‐HPLC method presented good linearity (R2 = 0.9992) within 10–2000 ng/mL and the detection limits was 3 ng/mL, which is significantly more sensitive than reported methods. The method was also applied in plasma and urine samples; good capability of removing matrices was observed, while hordenine in low content was well extracted and enriched. The recoveries were from 90.6 to 94.7% and from 89.3 to 91.5% for the spiked plasma and urine samples, respectively, with the relative standard deviations <4.7%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A poly(methacrylic acid-ethylene glycol dimethacrylate, MAA-EGDMA) monolithic capillary was used for the direct and on-line extraction of telmisartan from Sprague-Dawley rat tissue (heart, kidney, and liver) homogenates. Under optimized conditions, the tissue homogenates were simply diluted with a mixture of phosphate buffer (pH 2)/ACN (90:8 v/v), and then injected for extraction only after centrifugation and filtration. Coupled to HPLC with fluorescence detection, the method was linear over the range of 1.25-1500 ng/g for telmisartan in heart and kidney, 12.5-15 000 ng/g in liver with correlation coefficients over 0.9992. The detection limits were found to be in the range from 0.24 to 1.8 ng/g. RSDs for intra- and inter-day ranged from 1.2 to 8.1%. The determination of telmisartan in treated rat tissues was achieved by using the proposed method.  相似文献   

9.
Xie C  Hu J  Xiao H  Su X  Dong J  Tian R  He Z  Zou H 《Electrophoresis》2005,26(4-5):790-797
A silica-based monolithic capillary column was prepared via a sol-gel process. The continuous skeleton and large through-pore structure were characterized by scanning electron microscopy (SEM). The native silica monolith has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). Column efficiencies greater than 250 000 plates/m for capillary electrochromatography (CEC) separation of basic compounds were obtained. It was observed that retention of basic pharmaceuticals on the silica monolith was mainly contributed by a cation-exchange mechanism. Other retention mechanisms including reversed-phase and normal-phase mechanisms and electrophoresis of basic compounds also played a role in separation. A comparison of the differences between CEC and capillary zone electrophoresis (CZE) separation was also discussed.  相似文献   

10.
A method based on poly (methacrylic acid‐co‐ethylene glycol dimethacrylate) monolith microextraction and octadecylphosphonic acid‐modified zirconia‐coated CEC followed by field‐enhanced sample injection preconcentration technique was proposed for sensitive CE‐UV analysis of six antidepressants (doxepin, clozapine, imipramine, paroxetine, fluoxetine and chlorimipramine) in human plasma and urine. A poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) monolithic capillary column was introduced for the extraction of antidepressants from urine and plasma samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the desorption solvent, which normally provided an excellent medium to ensure direct compatibility for field‐enhanced sample injection in CE, was analyzed by CE directly. By the use of alkylphosphonate‐modified zirconia‐coated CEC for separation of the basic compounds of antidepressants, high separation efficiency and resolution were achieved because that both hydrophobic interaction between analytes and alkylphosphonate‐modified zirconia coat and electrophoretic effect work on the separation of antidepressants. The best separation was achieved using a buffer composed of 0.3 M ammonium acetate (adjusted to pH 4.5 with 1 M acetic acid) and 35% ACN v/v, with a temperature and voltage of 20°C and 20 kV, respectively. By applying both preconcentration procedures, LODs of 11.4–51.5 and 3.7–17.0 μg/L were achieved for the six antidepressants in human plasma and urine, respectively. Excellent method of reproducibility was found over a linear range of 50–5000 μg/L in plasma and urine sample.  相似文献   

11.
In this study, a polymer monolith microextraction (PMME) using a poly (methacrylic acid-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith in conjunction with high-performance liquid chromatography (HPLC) was developed for the determination of 2,4-dinitrophenylhydrazine (DNPH) derivatives of several aldehydes in human saliva. The conditions for the labeling reactions of aldehydes with DNPH and followed extraction of the derivatives were optimized. The precision, recovery and detection limits were evaluated with spiked saliva. The limits of detection ranged from 0.43 to 1.40 μg/L. The inter-and intra-day relative standard deviations were less than 10%. The proposed method was successfully applied to the determination of aldehydes in saliva samples from a non-smoker, a passive smoker and a heavy smoker.  相似文献   

12.
An anion exchange monolithic silica capillary column was prepared by surface modification of a hybrid monolithic silica capillary column prepared from a mixture of tetramethoxysilane (TMOS) and methyltrimethoxysilane (MTMS). The surface modification was carried out by on-column copolymerization of N-[3-(dimethylamino)propyl]acrylamide methyl chloride-quaternary salt (DMAPAA-Q) with 3-methacryloxypropyl moieties bonded as an anchor to the silica surface to form a strong anion exchange stationary phase. The columns were examined for their performance in liquid chromatography (LC) and capillary electrochromatography (CEC) separations of common anions. The ions were separated using 50 mM phosphate buffer at pH 6.6. Evaluation by LC produced an average of 30,000 theoretical plates (33 cm column length) for the inorganic anions and nucleotides. Evaluation by CEC, using the same buffer, produced enhanced chromatographic performance of up to ca. 90,000 theoretical plates and a theoretical plate height of ca. 4 μm. Although reduced efficiency was observed for inorganic anions that were retained a long time, the results of this study highlight the potential utility of the DMAPAA-Q stationary phase for anion separations. Figure Micro-LC performance evaluation of a strong anion exchange silica monolith column, 100H-MOP-DMAPAA-Q, 33 cm in length, with a mobile phase of 50 mM phosphate buffer, pH 2.8; linear velocity: u = 1.8 mm/s; UV-Vis detection at 254 nm. Sample solution (5 mg/mL of each component, 4 mL) was injected in split flow injection mode at a split ratio of ca. 1:1900 with a pump flow rate of 1.5 mL/min  相似文献   

13.
A method based on poly(methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith microextraction (PMME) and online preconcentration technique of field-amplified sample stacking (FASS) was proposed for sensitive capillary electrophoresis-ultraviolet (CE-UV) analysis of 12 sulfonamides (sulfamethazine, sulfamethoxypyridazine, sulfathiazole, sulfamerazine, sulfameter, sulfadoxine, sulfadimethoxine, sulfamonomethoxine sodium, sulfachlorpyridazine, sulfamethoxazole, sulfamethizole, and sulfisoxazole) in chicken samples. The conditions of PMME were optimized for the improvement of extraction efficiency and reduction of the matrix interferences from chicken sample. The best separation was achieved within 15min using a buffer of 100mM phosphate electrolyte (pH 7.3) with temperature and voltage of 20 degrees C and 25kV, respectively. By applying FASS, detection limits of 3.49-16.7ng/g were achieved with satisfactory precision (RSD<==13%) and recovery (96.3-104%) over a linear range of 50-1000ng/g for most analytes.  相似文献   

14.
A simple, rapid and sensitive method for the determination of hexanal and heptanal in plasma by high-performance liquid chromatography (HPLC) has been developed, which is based on polymer monolith microextraction (PMME) with in situ derivatization. 2,4-dinitrophenylhydrazine (DNPH) as a derivatizing reagent was first adsorbed on a poly (methacrylic acid-co-ethylene glycol dimethacrylate) (MAA-EGDMA) monolith, and then microextraction was performed simultaneously with derivatization on the monolith. The several parameters affecting the in situ derivatization simultaneously with PMME were investigated, including the flow rate, pH, buffer concentration, and temperature. The whole pretreatment process can be accomplished within 8 min. The limits of detection for hexanal and heptanal were found to be 2.4 and 3.6 nmol/L, respectively. The recoveries in plasma sample were in the range of 83-87% with the inter- and intra-day precisions less than 6.8%. This method was successfully applied to the analysis of hexanal and heptanal in plasma samples from different cancer patients.  相似文献   

15.
A novel approach for in-line solid-phase extraction capillary electrophoresis (SPE-CE) for basic analytes was developed. The method is based on the use of a weak cation-exchange monolith synthesised in situ in the front end of the CE capillary via photoinitiated polymerization to form poly(methacrylic acid-co-ethylene glycol dimethacrylate), which was used to create the SPE phase in-line with the CE separation capillary. The monolithic SPE material exhibited a surface area of 23.1 m2/g and a capacity of 403 nM for dopamine. Adsorption of the analytes as protonated, cationic species onto the SPE phase was achieved using an electrolyte of 6 mM phosphate and 12 mM sodium ion, buffered at pH 7.0, which is above the pKa of the monolith but below the pKa of the analytes. Elution of the analytes from the SPE phase was achieved using an electrolyte with a pH below that of the pKa of the monolith, namely 12 mM phosphate and 12 mM sodium ion, buffered at pH 3.0. Due to the discontinuous electrolyte combination, analytes were simultaneously eluted and focused as the electrophoretically mobilised pH step boundary moved through the SPE monolith, after which the analytes were separated by conventional CZE in the remainder of the capillary. Quantitative extraction from a solution of 0.5 microg/ml dopamine and epinephrine was achieved when flushing up to 15 column volumes of sample through the capillary. The limits of detection (S/N=3) for dopamine and epinephrine were 3.7 and 4.3 ng/ml, and this method provided a sensitivity enhancement for dopamine of 462 times compared to CZE using hydrodynamic injection. The developed method was used to preconcentrate a test mixture of neurotransmitters comprising dopamine, epinephrine, 5-hydroxytryptamine, metanephrine and also histamine. The applicability of this approach to real life samples was demonstrated by using a urine sample from a healthy person to detect dopamine at sub-ppm levels.  相似文献   

16.
杜梨  李娜  刘美琨  王翰云  张倩影  王曼曼  王学生 《色谱》2019,37(12):1343-1348
以[2-(丙烯酰氧基)乙基]三甲基氯化铵(DAC)为单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂在注射器中制备聚合物整体柱,用其固相萃取尿液中溴西泮(BRZ)、劳拉西泮(LRZ)和地西泮(DZP)3种苯二氮(卄卓)类药物(BZDs),并采用高效液相色谱法(HPLC)分析。实验考察了整体柱聚合时间及固相萃取条件(淋洗溶液、洗脱溶剂种类和体积)对BZDs萃取效率的影响。结果表明,仅聚合4 h得到的整体柱对BZDs吸附效率为100%。取尿液样品4 mL上样,用4 mL H2O冲洗,1 mL乙酸乙酯洗脱,采用高效液相色谱分析。在最优条件下,3种BZDs在4.0~1000 ng/mL范围内线性关系良好(r=0.999),检出限(S/N=3)和定量限(S/N=10)分别为1.0~1.2 ng/mL和3.3~4.0 ng/mL;在10、25和50 ng/mL加标水平下回收率为81.4%~102%,日内(n=3)和日间(n=3)相对标准偏差分别为1.2%~4.5%和2.5%~8.3%。该整体柱可对尿液中3种BZDs有效净化,且富集达12~15倍。方法构筑的聚合物整体柱制备简单,萃取高效,可成功用于尿液中3种BZDs的分析。  相似文献   

17.
Qiang Gao  Yu‐Qi Feng 《Electrophoresis》2011,32(16):2099-2106
Using magnetite/silica/poly(methacrylic acid‐co‐ethylene glycol dimethacrylate) (Fe3O4/SiO2/poly(MAA‐co‐EDMA)) magnetic microspheres, a rapid and high‐throughput magnetic solid‐phase extraction coupled with capillary zone electrophoresis (MSPE‐CZE) method was developed for the determination of illegal drugs (ketamine, amphetamines, opiates, and metabolites). The MSPE of target analytes could be completed within 2 min, and the eight target analytes could be baseline separated within 15 min by CZE with 30 mM phosphate buffer solution (PBS, pH 2.0) containing 15% v/v ACN as background electrolyte. Furthermore, hydrodynamic injection with field‐amplified sample stacking (FASS) was employed to enhance the sensitivity of this MSPE‐CZE method. Under such optimal conditions, the limits of detection for the eight target analytes ranged from 0.015 to 0.105 μg/mL. The application feasibility of MSPE‐CZE in illegal drugs monitoring was demonstrated by analyzing urine samples, and the recoveries of target drugs for the spiked sample ranging from 85.4 to 110.1%. The method reproducibility was tested by evaluating the intra‐ and interday precisions, and relative standard deviations of <10.3 and 12.4%, respectively, were obtained. To increase throughput of the analysis, a home‐made MSPE array that has potential application to the treatment of 96 samples simultaneously was used.  相似文献   

18.
The separation and determination of tocopherols (Ts) in vegetable oils by CEC using methacrylate ester-based monolithic columns has been developed. The effects of pore size of the monolithic columns were studied, and the composition of mobile phase was optimized. The optimal pore size of the monolith was obtained with 12 wt% 1,4-butanediol in the polymerization mixture. Excellent resolution between tocopherols was achieved within 10 min analysis time with a 99:1 v/v MeOH-aqueous buffer containing 5 mM tris(hydroxymethyl)aminomethane at pH 8.0. The LODs were lower than 2.3 microg/mL, and interday and column-to-column reproducibilities at 25 microg/mL were better than 5.6%. Using a 93:7 v/v MeOH-aqueous buffer, both tocopherols and tocotrienols (T(3)s) of grapeseed and palm oils were resolved. Application to the detection of olive oil adulteration with low-cost edible oils was demonstrated.  相似文献   

19.
The conventional analytical HPLC was successfully developed for micro-column separation by using a simple eluate splitting system, a self-preparation of monolithic column and an on-capillary column detector in our laboratory. A typical polystyrene-based monolith was quickly prepared inside the fused-silica capillary, which in situ polymerization was carried out in 10 min by microwave irradiation. The reactant solution consisted of styrene (ST) as a functional monomer, divinylbenzene (DVB) as a cross-linking agent, toluene and isooctane as porogenic solvents, and azobisisobutyronitrile (AIBN) as an initiator. The monolith was proved to form in the center of the capillary and adhered to the column inner wall by the scanning electron micrograph. Its chromatographic behaviors were evaluated in detail by varying the flow rate and percentage of mobile phases, and under the optimal condition, baseline separation of the model analytes including thiourea, benzene, toluene, ethylbenzene was obtained with a highest theoretical plate number near 11,290 N/m by the developed capillary HPLC. Furthermore, the stability and porosity of the prepared monolith were systematically investigated by a simple flow method. Figure A polystyrene-based monolith was rapidly prepared inside the fused-silica capillary, which in situ polymerization was carried out about 10 min by microwave irradiation.  相似文献   

20.
Li Y  Xiang R  Horváth C  Wilkins JA 《Electrophoresis》2004,25(4-5):545-553
A new kind of monolithic capillary column was prepared for capillary electrochromatography (CEC) with a positively charged polymer layer on the inner wall of a fused-silica capillary and a neutral monolithic packing as the bulk stationary phase. The fused-silica capillary was first silanized with 3-glycidoxypropyltrimethoxysilane (GPTMS). Polyethyleneimine (PEI) was then covalently bonded to the GPTMS coating to form an annular positively charged polymer layer for the generation of electroosmotic flow (EOF). A neutral bulk monolithic stationary phase was then prepared by in situ copolymerization of vinylbenzyl chloride (VBC) and ethylene glycol dimethacrylate in the presence of 1-propanol and formamide as porogens. Benzyl chloride functionalities on the monolith were subsequently hydrolyzed to benzyl alcohol groups. Effects of pH on the EOF mobility of the column were measured to monitor the completion of reactions. Using a column with this design, we expected general problems in CEC such as irreversible adsorption and electrostatic interaction between stationary phase and analytes to be reduced. A peptide mixture was successfully separated in counter-directional mode CEC. Comparison of peptide separations in isocratic monolithic CEC, gradient HPLC and capillary zone electrophoresis (CZE) indicated that the separation in CEC is governed by a dual mechanism that involves a complex interplay between selective chromatographic retention and differential electrophoretic migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号