首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton multipolar spin states associated with dipolar encoded longitudinal magnetization (DELM) and double-quantum (DQ) coherences of bound water are investigated for bovine and sheep Achilles tendon under mechanical load. DELM decay curves and DQ buildup and decay curves reveal changes of the 1H residual dipolar couplings for tendon at rest and under local compression forces. The multipolar spin states are used to design dipolar contrast filters for NMR 1H images of heterogeneous tendon. Heterogeneities in tendon samples were artificially generated by local compression parallel and perpendicular to the tendon plug axis. Quotient images obtained from DQ-filtered images by matched and mismatched excitation/reconversion periods are encoded only by the residual dipolar couplings. Semi-quantitative parameter maps of the residual dipolar couplings of bound water were obtained from these quotient images using a reference elastomer sample. This method can be used to quantify NMR imaging of injured ordered tissues.  相似文献   

2.
The effect of a distribution in the (1)H-(1)H dipolar coupling on (1)H double-quantum (DQ) magic angle spinning (MAS) nuclear magnetic resonance (NMR) spinning sideband patterns is considered. In disordered or amorphous materials a distribution in the magnitude of the (1)H-(1)H dipolar coupling is a realistic possibility. Simulations of the (1)H DQ MAS NMR spinning sideband spectra were performed with the two-spin approximation. These simulations reveal that a dipolar coupling distribution can greatly affect the DQ spectral shape and behavior of the DQ build-up. The spectral line shapes are quantified by measurement of the relative intensities of the DQ sidebands. These variations in the (1)H DQ NMR spectra are evaluated as a function of the width of the dipolar coupling distribution. As an example, the experimental DQ spinning sideband spectrum for a hydrated polyoxoniobate containing 15 H(2)O molecules per hexaniobate cluster, are better simulated with a distribution of dipolar couplings opposed to a single coupling constant.  相似文献   

3.
The homonuclear and heteronuclear residual dipolar couplings in elastomers reflect changes in the cross-link density, temperature, the uniaxial and biaxial extension or compression as well as the presence of penetrant molecules. It is shown theoretically that for an isolated methyl group the relative changes in the intensity of the homonuclear double-quantum buildup curves in the initial time regime due to variation of the residual dipolar coupling strength is less sensitive than the changes in the triple-quantum filtered NMR signal when considering the same excitation/reconversion time. For a quadrupolar nucleus with spin I=2 the sensitivity enhancement was simulated for four-quantum, triple-quantum, and double-quantum buildup curves. In this case the four-quantum build-up curve shows the highest sensitivity to changes of spin couplings. This enhanced sensitivity to the residual dipolar couplings was tested experimentally by measuring 1H double-quantum, triple-quantum, and four-quantum buildup curves of differently cross-linked natural rubber samples. In the initial excitation/reconversion time regime, where the residual dipolar couplings can be measured model free, the relative changes in the intensity of the four-quantum buildup curves are about five times higher than those of the double-quantum coherences. For the first time proton four-quantum coherences were recorded for cross-linked elastomers.  相似文献   

4.
The spin system response to the five-pulse sequence used for measurements of double-quantum and triple-quantum buildup curves is evaluated in the initial excitation/reconversion regime. The multispin dipolar network that is present also in many soft solids like elastomers was considered. It is proved rigorously that the relevant quantity for analysis of double-quantum build-up curves in the initial regime is the second van Vleck moment. The higher-order moments edited by double-quantum as well as higher-order coherences in the multiple-quantum build-up experiments are different from van Vleck moments. These results can be applied to compare (1)H residual moments edited by double-quantum and triple-quantum experiments with those measured by other NMR methods. The sensitivity of multiple-quantum coherences to the changes in the values of residual dipolar couplings for cross-linked natural rubber under uniaxial elongation is also discussed. Under such conditions (1)H second van Vleck moments were measured for different elongation ratios of a cross-linked natural rubber. Moreover, (1)H triple-quantum edited moments were also measured for the same sample under uniaxial compression. The dependence of the second van Vleck moment and the time of the maximum of the double-quantum buildup curve on the cross-link density of natural rubber measured at low magnetic field was also investigated.  相似文献   

5.
Residual dipolar couplings for pairs of proximate magnetic nuclei in macromolecules can easily be measured using high-resolution NMR methods when the molecules are dissolved in dilute liquid crystalline media. The resulting couplings can in principle be used to constrain the relative orientation of molecular fragments in macromolecular systems to build a complete structure. However, determination of relative fragment orientations based on a single set of residual dipolar couplings is inherently hindered by the multi-valued nature of the angular dependence of the dipolar interaction. Even with unlimited dipolar data, this gives rise to a fourfold degeneracy in fragment orientations. In this Communication, we demonstrate a procedure based on an order tensor analysis that completely removes this degeneracy by combining residual dipolar coupling measurements from two alignment media. Application is demonstrated on (15)N-(1)H residual dipolar coupling data acquired on the protein zinc rubredoxin from Clostridium pasteurianum dissolved in two different bicelle media.  相似文献   

6.
A novel approach for solid-state NMR characterization of cross-linking in polymer blends from the analysis of (1)H-(13)C polarization transfer dynamics is introduced. It extends the model of residual dipolar couplings under permanent cross-linking, typically used to describe (1)H transverse relaxation techniques, by considering a more realistic distribution of the order parameter along a polymer chain in rubbers. Based on a systematic numerical analysis, the extended model was shown to accurately reproduce all the characteristic features of the cross-polarization curves measured on such materials. This is particularly important for investigating blends of great technological potential, like thermoplastic elastomers, where (13)C high-resolution techniques, such as CP-MAS, are indispensable to selectively investigate structural and dynamical properties of the desired component. The validity of the new approach was demonstrated using the example of the CP build-up curves measured on a well resolved EPDM resonance line in a series of EPDM/PP blends.  相似文献   

7.
The possibility of exciting and filtering various multipolar spin states in proton NMR like dipolar encoded longitudinal magnetization (LM), double-quantum (DQ) coherences, and dipolar order (DO) in strongly inhomogeneous static and radio-frequency magnetic fields is investigated. For this purpose pulse sequences which label and manipulate the multipolar spin states in a specific way were implemented on the NMR-MOUSE (mobile universal surface explorer). The performance of the pulse sequences was also tested in homogeneous fields on a solid-state high-field NMR spectrometer. The theoretical justification of these procedures was shown for a rigid two-spin 1/2 system coupled by dipolar interactions. Dipolar encoded longitudinal magnetization decay curves, double-quantum and dipolar-order buildup curves, as well as double-quantum decay curves were recorded with the NMR-MOUSE for natural rubber samples with different crosslink density. The possibility of using these multipolar spin states for investigations of strained elastomers by NMR-MOUSE is also shown. These curves give access to quantitative values of the ratio of the total residual dipolar couplings of the protons in the series of samples which are in good agreement with those measured in homogeneous fields.  相似文献   

8.
The possibility of exciting and detecting proton NMR double-quantum coherences in inhomogeneous static and radiofrequency magnetic fields was investigated. For this purpose specialized pulse sequences which partially refocus the strongly inhomogeneous evolution of the spin system and generate double-quantum buildup and decay curves were implemented on the NMR MOUSE (mobile universal surface explorer). The theoretical justification of the method was developed for the simple two-spin-1/2 system. The performances of the same pulse sequences were also tested on a solid-state high-field NMR spectrometer. It was shown that DQ decay curves have a better signal-to-noise ratio in the initial time regime than DQ buildup curves. The double-quantum buildup and decay curves were recorded for a series of cross-linked natural rubber samples. These curves give access to quantitative values of the ratio of proton total residual dipolar couplings which are in good agreement with those measured in homogeneous fields. A linear dependence of these ratios on the sulfur-accelerator content was found.  相似文献   

9.
The measurement of residual dipolar couplings (RDCs) from partially oriented molecules is now widely used to provide restraints for NMR structure determination. Bond vibrations, random angular fluctuations around bond vectors and conformational exchange all influence the magnitude of the experimental RDCs. The effect that angular fluctuations have upon the magnitude of RDCs is quantitatively compared using three new models (elliptic, uni-dimensional, and equally populated two site jump) and three established models (static, isotropic motion in a cone and free diffusion about a fixed symmetry axis: Woessner's model) for motional averaging in the limit that the amplitude of motion beta < or = (max)15-20 degrees. The influence of the different motional models on the value of R(obs) determined from the distribution of RDCs is explored. The consequences of the different types of angular motion for the accurate determination of bond vector orientation, with respect to the alignment tensor, A, is investigated. The extent to which motion influences the magnitude of RDCs is compared to some non-dynamic factors affecting RDC size.  相似文献   

10.
A two-dimensional (2D) double-quantum (DQ) experiment under rotational resonance (R(2)) conditions is introduced for evaluating dipolar couplings in rotating solids. The contributions from the R(2)-recoupled dipolar interaction and the J coupling can be conveniently separated in the resulting 2D R(2)-DQ spectrum, so that the unknown dipolar coupling can readily be extracted, provided that the values of the involved J coupling constants are known. Since the measured parameters are integral intensity ratios between suitably chosen absorption peaks in the 2D spectrum, the proposed method is characterized by a reduced sensitivity to relaxation parameters. The effect of rotor-modulated terms, including chemical shift anisotropy, is efficiently averaged out by synchronizing the excitation/reconversion time with the rotor period. All of these features are demonstrated theoretically by the example of two model systems, namely, isolated spin-pairs and a three-spin system. The results of the theoretical models are applied to both (13)C and (1)H nuclei to extract dipolar couplings in uniformly (13)C labeled L-alanine and a crosslinked natural rubber.  相似文献   

11.
We here present a substantially improved version of the popular Back-to-Back (BaBa) homonuclear double-quantum (DQ) MAS recoupling pulse sequence. By combining the original pulse sequence with a virtual π pulse train with xy-16 phase cycling along with time-reversed DQ reconversion, a truly broadband and exceptionally robust pulse sequence is obtained. The sequence has moderate radio-frequency power requirements, amounting to only one 360° nutation per rotor cycle, it is robust with respect to rf power and tune-up errors, and its broadband performance increases with increasing spinning frequency, here tested up to 63 kHz. The experiment can be applied to many spin-1/2 nuclei in rigid solids with substantial frequency offsets and CSAs, which is demonstrated on the example of 31P NMR of a magnesium ultraphosphate, comparing experimental data with multi-spin simulations, and we also show simulations addressing the performance in 13C NMR of bio(macro)molecules. 1H-based studies of polymer dynamics are highlighted for the example of a rigid solid with strongly anisotropic mobility, represented by a polymer inclusion compound, and for the example of soft materials with weak residual dipole-dipole couplings, represented by homogeneous and inhomogeneous elastomers. We advocate the use of normalized (relaxation-corrected) DQ build-up curves for a quantitative assessment of weak average dipole-dipole couplings and even distributions thereof.  相似文献   

12.
The chemical shifts of nuclei that have chemical shielding anisotropy, such as the 15N amide in a protein, show significant changes in their chemical shifts when the sample is altered from an isotropic state to an aligned state. Such orientation-dependent chemical shift changes provide information on the magnitudes and orientation of the chemical shielding tensors relative to the molecule's alignment frame. Because of the extremely high sensitivity of the chemical shifts to the sample conditions, the changes in chemical shifts induced by adding aligned bicelles do not arise only from the protein alignment but should also include the accumulated effects of environmental changes including protein-bicelle interactions. With the aim of determining accurate 15N chemical shielding tensor values for solution proteins, here we have used magic angle sample spinning (MAS) to observe discriminately the orientation-dependent changes in the 15N chemical shift. The application of MAS to an aligned bicelle solution removes the torque that aligns the bicelles against the magnetic field. Thus, the application of MAS to a protein in a bicelle solution eliminates only the molecular alignment effect, while keeping all other sample conditions the same. The observed chemical shift differences between experiments with and without MAS therefore provide accurate values of the orientation-dependent 15N chemical shifts. From the values for ubiquitin in a 7.5% (w/v) bicelle medium, we determined the 15N chemical shielding anisotropy (CSA) tensor. For this evaluation, we considered uncertainties in measuring the 1H-15N dipolar couplings and the 15N chemical shifts and also structural noise present in the reference X-ray structure, assuming a random distribution of each NH bond vector in a cone with 5 degrees deviation from the original orientation. Taking into account these types of noise, we determined the average 15N CSA tensor for the residues in ubiquitin as Delta sigma=-162.0+/-4.3 ppm, eta=0.18+/-0.02, and beta=18.6+/-0.5 degrees, assuming a 1H-15N bond length of 1.02 A. These tensor values are consistent with those obtained from solid-state NMR experiments.  相似文献   

13.
The main objective of this article was (i) to refocus the residual dipolar and quadrupolar interactions in anisotropic tissues employing magic sandwich echo (MSE) imaging and to compare the results with that of conventional spin-echo (SE) imaging, and (ii) to quantify MSE relaxation and dispersion characteristics in bovine Achilles tendon and compare with spin-lattice relaxation time constant in the rotating frame (T(1rho)). Magic sandwich echo weighted images are approximately 75-100% higher in signal-to-noise ratio than the corresponding T(2)-weighted images. Magic sandwich echo relaxation times varied from 13+/-2 to 19+/-3 ms (mean+/-S.D.), depending upon the structural location of tendon. T(2) relaxation times only varied from 4+/-1 to 10+/-3 ms (mean+/-S.D.) on the same corresponding locations. Magic sandwich echo provides approximately 100% enhancement in relaxation times compared to T(2). Preliminary results based on bovine Achilles tendon and cartilage specimens suggest that the MSE technique has potential for refocusing residual dipolar as well as quadrupolar interactions in anisotropic systems and yields higher intensities than conventional SE imaging as well as T(1rho)-encoded imaging, especially at low-burst pulse amplitudes (250 and 500 Hz).  相似文献   

14.
Contrastfilters for NMR imaging of residual 1H dipolar couplings of elastomers are introduced based on dipolar-encoded longitudinal magnetization, as well as double- and triple-quantum coherences. The spin response is discussed in the initial excitation time regime for methylene, methyl, and methine protons applicable to poly(isoprene) and other elastomers, taking into account the hierarchy of dipolar couplings and the associated editing features of multiple-quantum experiments. The efficiency of these filters is investigated for a series of cross-linked poly(isoprene) samples. Spatially resolved dipolar-encoded longitudinal magnetization decays and double-quantum and triple-quantum buildup curves are presented for a phantom made of poly(isoprene) with different cross-link densities. Two-dimensional images representing residual dipolar couplings are presented using dipolar-encoded longitudinal magnetization, double-quantum, and triple-quantum contrast filters. Images from dipolar-encoded longitudinal magnetization and triple-quantum coherences show the highest resolution and contrast, respectively.  相似文献   

15.
Contrastfilters for NMR imaging of residual 1H dipolar couplings of elastomers are introduced based on dipolar-encoded longitudinal magnetization, as well as double- and triple-quantum coherences. The spin response is discussed in the initial excitation time regime for methylene, methyl, and methine protons applicable to poly(isoprene) and other elastomers, taking into account the hierarchy of dipolar couplings and the associated editing features of multiple-quantum experiments. The efficiency of these filters is investigated for a series of cross-linked poly(isoprene) samples. Spatially resolved dipolar-encoded longitudinal magnetization decays and double-quantum and triple-quantum buildup curves are presented for a phantom made of poly(isoprene) with different cross-link densities. Two-dimensional images representing residual dipolar couplings are presented using dipolar-encoded longitudinal magnetization, double-quantum, and triple-quantum contrast filters. Images from dipolar-encoded longitudinal magnetization and triple-quantum coherences show the highest resolution and contrast, respectively.  相似文献   

16.
CH(alpha) residual dipolar couplings (Deltardc's) were measured for the oxidized cytochrome b562 from Escherichia coli as a result of its partial self-orientation in high magnetic fields due to the anisotropy of the overall magnetic susceptibility tensor. Both the low spin iron (III) heme and the four-helix bundle fold contribute to the magnetic anisotropy tensor. CH(alpha) Deltardc's, which span a larger range than the analogous NH values (already available in the literature) sample large space variations at variance with NH Deltardc's, which are largely isooriented within alpha helices. The whole structure is now significantly refined with the chemical shift index and CH(alpha) Deltardc's. The latter are particularly useful also in defining the molecular magnetic anisotropy parameters. It is shown here that the backbone folding can be conveniently and accurately determined using backbone restraints only, which include NOEs, hydrogen bonds, residual dipolar couplings, pseudocontact shifts, and chemical shift index. All these restraints are easily and quickly determined from the backbone assignment. The calculated backbone structure is comparable to that obtained by using also side chain restraint. Furthermore, the structure obtained with backbone only restraints is, in its whole, very similar to that obtained with the complete set of restraints. The paramagnetism based restraints are shown to be absolutely relevant, especially for Deltardc's.  相似文献   

17.
Proton nuclear magnetic resonance (NMR) magnetization exchange is used to investigate residual dipolar couplings in a series of cross-linked poly(styrene-cobutadiene) elastomers. A new model for the dipolar unit is used for the evaluation of the signal decay in magnetization exchange experiments. It takes into account an extended residual dipolar coupling network along the polymer chain. It is shown that in the regime of short mixing times, information about the residual dipolar coupling between methine and methylene protons can be obtained which is not affected by other inter- and intramolecular dipolar couplings. The dynamic order parameter of methine-methylene protons is measured and correlated with cross-link density. This study certifies the quality of a filter for magnetization from residual dipolar couplings which exploit magnetization exchange. The filter can be used to generate contrast in NMR images of heterogeneous elastomers. The first proton NMR parameter image of a dynamic order parameter is presented for a phantom made from poly(styrene-cobutadiene) samples with different cross-link densities.  相似文献   

18.
It is shown how homonuclear distances and homonuclear dipolar lattice sums between spin-1/2 nuclei can be measured by a pulsed solid-state NMR experiment under magic-angle spinning conditions. The presented technique is based on double-quantum coherence filtering. Instead of measuring a build-up of double-quantum coherence the pulse sequence is designed to dephase double-quantum coherence. This is achieved by exciting double-quantum coherence either with the help of the through-space dipolar coupling or the through-bond dipolar coupling while the dephasing relies on the through-space dipolar coupling as selected by a gamma-encoded pulse sequence from the C/R symmetry class. Since dephasing curves can be normalized on zero dephasing, it is possible to analyze the initial dephasing regime and hence determine dipolar lattice sums (effective dipolar couplings) in multiple-spin systems. A formula for the effective dipolar coupling is derived theoretically and validated by numerical calculations and experiments on crystalline model compounds for (13)C and (31)P spin systems. The double-quantum dephasing experiment can be combined with constant-time data sampling to compensate for relaxation effects, consequently only two experimental data points are necessary for a single distance measurement. The phase cycling overhead for the constant-time experiment is minimal because a short cogwheel phase cycle exists. A 2D implementation is demonstrated on [(13)C(3)]alanine.  相似文献   

19.
A method for accurately measuring H(N)-H(alpha) residual dipolar couplings is described. Using this technique, both the sign and magnitude of the coupling can be determined easily. Residual dipolar coupling between H(N)(i)-H(alpha)(i) and H(N)(i)-H(alpha)(i-1) were measured for the FK506 binding protein complexed to FK506. The experimental values were in excellent agreement with predictions based on an X-ray crystal structure of the protein/ligand complex, suggesting that these residual dipolar couplings will provide accurate structural constraints for the refinement of protein structures determined by NMR.  相似文献   

20.
A new system for partial alignment of polar organic molecules to measure residual dipolar couplings in NMR consists of a 1:1 or a 2:1 mixture of water and DMSO including 3-13% n-alkylpentaethylene glycol as the surfactant. Temperature and concentration dependence of the alignment system are investigated and, as examples, the 13C,1H residual dipolar couplings for the amino acid methionine 1 and for an alpha-methylene-gamma-butyrolactone 2 have been obtained and are compared with those obtained from the alignment media consisting of n-alkylpentaethylene glycol, n-alkyl alcohol and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号