首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermal decomposition of neat TBP, acid-solvates (TBP·1.1HNO3, TBP·2.4HNO3) (prepared by equilibrating neat TBP with 8 and 15.6?M nitric acid) with and without the presence of additives such as uranyl nitrate, sodium nitrate and sodium nitrite, mixtures of neat TBP and nitric acid of different acidities, 1.1?M TBP solutions in diluents such as n-dodecane (n-DD), n-octane and isooctane has been studied using an adiabatic calorimeter. Enthalpy change and the activation energy for the decomposition reaction derived from the calorimetric data wherever possible are reported in this article. Neat TBP was found to be stable up to 255?°C, whereas the acid-solvates TBP·1.1HNO3 and TBP·2.4HNO3 decomposed at 120 and 111?°C, respectively, with a decomposition enthalpy of ?495.8?±?10.9 and ?1115.5?±?8.2?kJ?mol?1 of TBP. Activation energy and pre exponential factor derived from the calorimetric data for the decomposition of these acid-solvates were found be 108.8?±?3.7, 103.5?±?1.4?kJ?mol?1 of TBP and 6.1?×?1010 and 5.6?×?109?S?1, respectively. The thermochemical parameters such as, the onset temperature, enthalpy of decomposition, activation energy and the pre-exponential factor were found to strongly depend on acid-solvate stoichiometry. Heat capacity (C p ), of neat TBP and the acid-solvates (TBP·1.1HNO3 and TBP·2.4HNO3) were measured at constant pressure using heat flux type differential scanning calorimeter (DSC) in the temperature range 32?C67?°C. The values obtained at 32?°C for neat TBP, acid-solvates TBP·1.1HNO3 and TBP·2.4HNO3 are 1.8, 1.76 and 1.63?J?g?1?K?1, respectively. C p of neat TBP, 1.82?J?g?1?K?1, was also measured at 27?°C using ??hot disk?? method and was found to agree well with the values obtained by DSC method.  相似文献   

2.
The tri-n-butyl phosphate-nitric acid (TBP-HNO3) complex prepared by contacting the pure TBP with the concentrated HNO3 can be used for direct dissolution of lanthanide and actinide oxides in the supercritical fluid carbon dioxide (SCF-CO2). Properties of the TBP-HNO3 complex have been studied. Experimental results showed that when the initial HNO3/TBP volume ratio was varied from 1 : 7 to 5 : 1, the concentration of HNO3 in the TBP-HNO3 complex changed from 1.95 to 5.89 mol/L, the [HNO3]/[TBP] ratio of the TBP-HNO3 complex changed from 0.61 to 2.22, and the content of H20 in the TBP-HNO3 complex changed from 2.02% to 4.19%. All of the density, viscosity and surface tension of the TBP-HNO3 complex changed with the concentration of HNO3 in the complex, and were higher than those of the pure TBE The protons of HNO3 and H2O in the complex underwent rapid exchange to exhibit a singlet resonance peak in nuclear magnetic resonance spectra. When the TBP-HNO3 complex was dissolved in a low dielectric constant solvent, small droplets of HNO3 were formed that can be detected by NMR.  相似文献   

3.
The kinetics of the reductive stripping of plutonium(IV) by dihydroxyurea (DHU) in 30% TBP/kerosene-HNO3 system was studied with a constant interfacial area cell. The stripping rate of plutonium(IV) increases with the increase of the stirring speed of two phases and the interfacial area. The activation energy of this process is 28.4 kJ/mol. Under the given experimental conditions, the mass transfer of Pu is not controlled by redox reaction, but controlled by molecular diffusion from the organic phase to organic film layer and from the aqueous film layer to aqueous phase. The rate equation of reductive stripping (process is controlled by diffusion) was obtained as: r 0 = k′[Pu(IV)]0[DHU]a 0.16[HNO3]a −0.34. The rate constant k′ is (5.0±0.4)·10−2 (mol/L)0.18·min−1 at 18.0°C.  相似文献   

4.
HNO3 is extracted in significant quantities by uranyl nitrate solvates with different extractants: TBP (tributyl phosphate), TOPO (trioctyl phosphine oxide) and TDA (tetradecyl ammonium). The effect of diluent nature is not observed on extracting HNO3 and TBP saturated by uranium at equilibrium with its salt using the diluents (CCl4, C6H5Cl, C12H26, CHCl3) which are less polar than UO2(NO3)2(TBP)2. HNO3 occurs in organic phase as undissociated form and its state is similar to pure anhydrous HNO3. Solvates of TBP and TDA with uranyl nitrate dissolve HNO3 without displacement of uranium from organic phase.  相似文献   

5.
N235萃取HCl体系中TBP消除第三相的作用机理   总被引:2,自引:2,他引:2  
通过测定萃取有机相的电导率变化研究叔胺N235(三烷基胺)萃取盐酸体系中第三相的形成及改性剂消除第三相的作用机理。实验结果表明,无改性剂时萃取体系在各种条件下均出现第三相。第三相组成为R3NH+(H2O)3·Cl-,具有导电性。加改性剂TBP(磷酸三丁酯)后,第三相消失。本文认为改性剂TBP消除第三相的作用机理是TBP能够将萃合物R3NH+(H2O)3·Cl-拆分为可溶于惰性稀释剂的R3NH+(H2O)3·O=P(OC4H9)3大阳离子,Cl-离子则以抗衡离子分散于稀释剂中。  相似文献   

6.
The pyrolysis of hydrated bis(pyrazinecarboxylate)copper(II) under an argon atmosphere proceeds via the loss of the water molecules at 84–95°C, ΔH=40.4 kJ (mol H2O)?1 followed by the thermal decomposition of the complex at 284–325°C, ΔH=97.0 kJ·mol?1, yielding 0.72 mole of pyrazine, 0.28 mole of bipyrazine, and 2 mole of CO2 per mole of complex.  相似文献   

7.
The results of a study on the polarographic behaviour of TBP and its influence on the determination of uranyl ions is presented. The half-wave potential of the adsorption wave of TBP depends on the concentration of TBP, type of supporting elec trolyte and its concentration. In the presence of TBP the polarographic wave of U(VI) ion is changed. Below 7·10?5 M TBP the polarographic wave of U(VI) is not affected, between 7·10?5 and 2·10?4 M TBP the shape, height and half-wave potential of U(VI) waves are changed and above 2·10?4 M, up to saturated solution of TBP, the waves of U(VI) do, not change further. The bes supporting electrolytes for the determination of U(VI) are KNO3 or NaClO4 in concentrations of 0.1 to 0.5 M, pH 1–2 and TBP concentrations from 3·10?4 to 1.2·10?3 M.  相似文献   

8.
Microwave-assisted dissolution of ceramic uranium dioxide in tri-n-butyl phosphate (TBP)–HNO3 complex was investigated. The research on dissolution of ceramic uranium dioxide in TBP–HNO3 inclusion complex under microwave heating showed the efficiency of the use of this method. Nitric acid present in the inclusion complex participates both dissolution of UO2, and oxidation of U(IV)–U(VI), the resulting UO2(NO3)2 extracted with tri-n-butyl phosphate. Dissolution rate depends on both temperature of microwave dissolution process, and concentration of nitric acid present in the inclusion complex. The most intensive dissolution process is when the concentration of nitric acid ≥2 mol/L and the temperature of 120 °C. From the experimental data obtained by two kinetic models activation energies were calculated. At the average activation energy of UO2 dissolution in TBP–HNO3 complex equal 70 kJ/mol, and reaction order is close to one, i.e. the reaction takes place in an area close to kinetic.  相似文献   

9.
The extraction of the pertechnetate anion has been investigated in the systems tributylphosphate (TBP)—solvent (carbon tetrachloride, n-heptane, chloroform)—metal salt (uranyl nitrate and chloride, thorium nitrate)—ammonium salt. In the absence of a metal, the solvates HTeO4. iTBP (i=4) are extracted, while in the presence of uranium and thorium, the distribution of technetium corresponds to the formation of the mixed complexes: UO2(NO3)(TeO4)·2TBP, UO2Cl(TcO4)·2TBP and Th(NO3)3 (TcO1)·2TBP. The effective constants of the reactions H++TcO 4 +i(TBP)org←(HTcO1·iTBP)org, and (MLn·2TBP)org+TcO 4 ←(MLn−1TcO4·2TBP)org+L were established in the above systems. The extraction of pertechnetate ion is more effective when it is coordinated to a cation solvated by TBP than the extraction in the form of pertechnetate acid solvated by TBP.  相似文献   

10.
Hydrogen bonding between water and tributyl phosphate (TBP) in TBP? CCl4? H2O system has been studied by 1H NMR. A new model and an empirical equation have been established on the basis of Li's model and the parameters of hydrogen bond between water and TBP are determined by nonlinear optimization method. In TBP? CCl4? H2O system change of 1H chemical shift of water can be satisfactorily explained by the new model and the empirical equation in the whole concentration range. When the concentration of water in the organic phase is very low, the main existing forms of water are H2O · TBP and H2O · 2TBP. When the concentration of water reaches saturation, the main existing form is associated water, but there are still about 20% of water existing in the forms of H2O · TBP and H2O · 2TBP.  相似文献   

11.
Radiolytic degradation of the TBP-HNO3 system has been studied for the radiation dose range of 19.8 to 262 kGy by the gas chromatographic method. n-Butanol and nitrobutane formed due to irradiation have been identified and estimated in pure TBP, TBP-3M HNO3 extract and TBP-5M HNO3 extract. The G-values (radiation chemical yields) of n-butanol are determined to be 0.28, 0.77 and 0.47 for a pure TBP, TBP-3M HNO3 extract and TBP-5M HNO3 extract, respectively. The G-values of nitrobutane (1-nitrobutane) are 0.55 and 1.09 for TBP-3M HNO3 extract and TBP-5M HNO3 extract. It is found than G(n-butanol) is less for TBP-5M HNO3 extract than for TBP-3M HNO3 extract, while G(nitrobutane) is grater for TBP-5M HNO3 extract than for TBP-3M HNO3 extract. This is explained on the basis of the formation of TBP.HNO3 species and the role played by nitric acid in the TBP phase.  相似文献   

12.
The gas-phase reactions of O . (H2O)n and OH(H2O)n, n=20–38, with nitrogen-containing atmospherically relevant molecules, namely NOx and HNO3, are studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and theoretically with the use of DFT calculations. Hydrated O . anions oxidize NO . and NO2 . to NO2 and NO3 through a strongly exothermic reaction with enthalpy of −263±47 kJ mol−1 and −286±42 kJ mol−1, indicating a covalent bond formation. Comparison of the rate coefficients with collision models shows that the reactions are kinetically slow with 3.3 and 6.5 % collision efficiency. Reactions between hydrated OH anions and nitric oxides were not observed in the present experiment and are most likely thermodynamically hindered. In contrast, both hydrated anions are reactive toward HNO3 through proton transfer from nitric acid, yielding hydrated NO3. Although HNO3 is efficiently picked-up by the water clusters, forming (HNO3)0–2(H2O)mNO3 clusters, the overall kinetics of nitrate formation are slow and correspond to an efficiency below 10 %. Combination of the measured reaction thermochemistry with literature values in thermochemical cycles yields ΔHf(O(aq.))=48±42 kJ mol−1 and ΔHf(NO2(aq.))=−125±63 kJ mol−1.  相似文献   

13.
The distribution of nitric acid between an aqueous phase of constant or variable ionic strength and a benzene solution of diphosphine dioxide can be explained by the following reactions H+a+ NO3-a+ DiPO0 ? D1PO·HNO30 H+a+ NO3-a+ DiPO·HNO30 ? DiPO·2 HNO30 At constant ionic strength, the stability constants K1″ were determined for the complexes 1,1-DiPO·HNO3 (98 ± 01 (M)-1), 1,4-DiPO·HNO3(44±3 (M)-1) and 1,5-DiPO·HNO3 (51 ± 1 (M)-1). The constants K11″ for the complexes 1,1-DiPO·2 HNO3 and 1,5-DiPO.2 HNO3 are respectively 035±001 (M)-1 and 62 ±0.05 (M)-1 at 25°. With an aqueous phase of variable ionic strength, values of K1'=54±7 (M)-2 for 1,5-D1PO.HNO3 and KII'=65 ± 04 (M)-2 for 1,5-DiPO·2 HN03 were obtained  相似文献   

14.
The composition of complexes formed upon the extraction of UVI and ThIV nitrates with O-n-nonyl(N,N-dibutylcarbamoylmethyl) methyl phosphinate (L) from solutions of nitric acid without additional solvent was determined by 31P NMR spectroscopy. The structures of the complexes formed were studied by IR spectroscopy. Uranium(VI) is extracted from 3 and 5 M solutions of HNO3 as the [UO2(L)2(NO3)2] complex, while thorium(IV) is extracted from 5 M HNO3 as the [Th(L)3(NO3)3]+·NO 3 complex. In both cases, ligand L has bidentate coordination. Ligand L contacts with 3 and 5 M nitric acid to form adducts L·HNO3 and L· (HNO3)2, respectively. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2460–2464, November, 2005.  相似文献   

15.
The synergic extraction of uranium(VI) from nitric acid solution with petroleum sulfoxides (PSO) and tri-n-butyl phosphate (TBP) mixture has been studied. It has been found that maximum synergic extraction effect occurs if the molar ratio of PSO to TBP is two to three. The composition of the complex of synergic extraction is UO2(NO3)2·TBP·PSO. The formation constant of the complex isK PT=8.19. The effect of extractant concentration, nitric acid concentration, salting-out agent concentration and temperature on the extraction equilibrium of uranium(VI) was also studied.  相似文献   

16.
Tracer concentrations of Hf(IV) were extracted by 60% TBP solution in benzene from 5M HClO4, 5M HCl, 6M HNO3 and 8M H2SO4 solutions, and by 1·10?4 M TOPO solution in benzene from 2M HClO4 and 2M HCl solutions in the presence of a variety of organic solvents miscible with the aqueous phase. Whereas for TBP these solvents caused an increase of HF(IV) extraction, an opposite effect was observed for TOPO. The results were discussed from the point of view of various solute-solvent and solvent-solvent interactions.  相似文献   

17.
The solvent extraction systems Be(NO3)2? HNO3? H2O? TBP/kerosene and M(NO3)2? H2O? TBP/kerosene (TBP = tri-n-butylphosphate, M = Be, Mg, Ca and Sr) have been studied. The alkaline earths elements are poorly extracted. Only very high acidities allow better extraction of beryllium. The sequence of extraction of the alkaline earths elements by the TBP depends on the concentration of the cations and is Ca > Be > Sr > Mg if the metal concentration is lower than 2 M.  相似文献   

18.
Radiation-induced decomposition of tributyl phosphate-nitric acid as a two-component system has been studied. Degradation products, dibutylphosphoric acid (DBP) and monobutylphosphoric acid (MBP), were determined by separation-extraction method. 0.59, 0.78 and 1.38 are the G (DBP) values and 0.15, 0.17 and 0.13 are the G (MBP) values obtained for pure TBP, TBP-3M HNO3 extract and TBP-5M HNO3 extract, respectively. G (–HNO3) values are 5.19 and 6.15 for 3M HNO3 and 5M HNO3 extracts. It is shown that nitric acid plays a significant role in enhancing the decomposition of TBP.  相似文献   

19.
Recently authors demonstrated direct dissolution of g-level PHWR UO2 fuel pellet fragments and in situ extraction by TBP-HNO3 and TiAP-HNO3 solutions at atmospheric pressures. Extending the work, similar studies were performed on intact unirradiated PHWR UO2 fuel pellets (~15 g U) with varying compositions of organic solvate of tri-n-butyl phosphate (TBP). It was observed that extent of dissolution was a strong function of organic solution composition TBP·(HNO3) x (H2O) y . Complete dissolution of intact UO2 pellet in a reasonable time was observed only in case of a particular solvate composition.  相似文献   

20.
γ-Zirconium phosphate-phosphite, γ-Zr·PO4·H2PO3·2H2O, (γ-ZrPP), was prepared and characterized. Direct treatment of γ-zirconium phosphate-phosphite with an ethanol solution of 0.1M 1,10-phenanthrolin and 2,2'-bipyridyl gave the well defined composites, γ-Zr·PO4·H2PO3(phen)0.15·H2O and γ-Zr·PO4·H2PO3(bipy)0.18·0.6H2O respectively.K d values of a mixture of lanthanide ions: La3+, Sm3+, Eu3+ and Yb3+ for the intercalated products and for γ-ZrPP in HNO3 solution at room temperature and at pH 2 and 4 were determined by a radiotracer technique.140La,152mEu,153Sm and175Yb radioisotopes were used for the equilibration experiment using 500 μl (4.0·10−5 mmole) each of the solutions of the tracers as a mixture in 7.5 M HNO3 solution at the desired pH with 0.1 g of γ-ZrPP and of the intercalated products. The selectivity order was found to be dependent on the nature of the ligand and on the pH. The 2,2'-bipyridyl product posseses, at pH 2 in general, a highK d value, specially for Sm3+ (9815.9) compared to that of the 1,10-phenanthrolin product (3375.5) and to γ-ZrPP (419.8). This could be attributed to partial deintercalation of the 2,2'-bipyridyl at pH 2 and increasing of ionogenic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号