首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of the peak temperature and energy flux on the surface of a steel anode in a pulsed high-current vacuum arc was determined by studying the spatial location of the borderline separating the region of hardened steel, produced by the pulse of energy flux to the anode, and the region of the anode which did not undergo a phase transition. The arc was run between a 14-mm-diameter stainless steel cathode and a 25-mm 4340 steel anode, separated by a 4-mm gap, with peak currents up to 1000 A and 71 ms full-width half-amplitude (FWHA) duration. The phase transition of the steel occurs at 727°C and the above-mentioned borderline is thus the geometrical location of all points which reached a peak temperature of 727°C. The peak anode surface temperature was calculated from the borderline position by approximate solution of the three-dimensional heat conduction equation. The effect of an axial magnetic field on the anode surface temperature and energy flux distribution was also studied showing that with no magnetic field the distribution had a pronounced maximum on the axis of the arc, while with the presence of a magnetic field the distribution became annular with a maximum at about mid-radius. In comparison, the shape of the distribution of the cathode mass deposited by the arc on the anode was uniform without a magnetic field. The peak of the anode temperature and the energy flux amplitude also depended on the magnetic field, first decreasing and then increasing almost linearly with it.  相似文献   

2.
A one-dimensional (1-D) physical model of the low-current-density steady-state vacuum arc is proposed. The model is based on the continuity equations for ions and electrons and the energy balance for the discharge system; the electric potential distribution in the discharge gap is assumed to be nonmonotonic. It is supposed that the ion current at the cathode is generated within the cathode potential fall region due to the ionization of the evaporated atoms by the plasma thermal electrons having Boltzmann's energy distribution. The model offers a satisfactory explanation for the principal regularities of a hot-cathode vacuum arc with diffuse attachment of the current. The applicability of the model proposed to the explanation of some processes occurring in a vacuum arc, such as the flow of fast ions toward the anode, the current cutoffs and voltage bursts, and the backward motion of a cathode spot in a transverse magnetic field is discussed  相似文献   

3.
Breakdown delay in a vacuum is considered in terms of the Joule mechanism. The effect of the cathode material on the delay time is studied. A test for optimality for the gap electrode surface condition is stated. When prepared under optimal conditions, cathodes have a minimum field enhancement coefficient at surface microirregularities. This allows one to estimate the emission parameters of the cathode surface and the dielectric strength of vacuum insulation.  相似文献   

4.
The steady-state electric current distribution in a multicathode-spot vacuum arc was determined by a solution of the magnetic transport equation subject to various boundary conditions. The inter-electrode region of the arc is modeled as a uniform plasma flowing from the cathode to the anode. Dimensional analysis shows that three parameters determine the magnetic field, and hence the current density which is derived from it: AR-the ratio of the electrode separation to the electrode radius, Rmm-magnetic Reynolds number of the axial material flow, and Rme-magnetic Reynolds number of the axial electron flow. While the anode side of the conducting medium is described as an equipotential surface, the following three cases of boundary conditions for the cathode side are examined: 1) a known current density distribution is assumed over the entire cathode side of the plasma surface; 2) the cathode side is an equipotential surface; and 3) the current is allowed to cross the cathode surface only through a finite number of ring shaped regions. Numerical solutions of the nonlinear magnetic transport equation show a constriction of the current at the anode side for all boundary conditions mentioned. On the other hand, the current moves to the perimeter of the cathode for boundary condition 2). When AR, Rmm, and Rme equal 0.72,-0.16, and 1.73, respectively, and a uniform current density flows at the cathode side, the on-axis current density at the anode is six times larger than its value at the cathode.  相似文献   

5.
To optimize thrust performance, the expression of space-charge-limited current for vacuum arc thruster is derived from Poisson's equation. The commonly used ring-type and coaxial-type vacuum arc thrusters are simplified to the equivalent current sheet in planar geometry and cylindrical capacitor, respectively, for this calculation. Both the spatial distribution and peak magnitude of space-charge-limited current are given explicitly, together with their dependences on gap distance, applied voltage, charge number, and ion mass. For typical experimental parameters of the vacuum arc thruster, it is shown that the maximum current density drops significantly when the gap distance becomes large and grows when the applied voltage increases; moreover, a cathode material of lower atomic weight yields a higher current density. The expressions of total current for these two types of vacuum arc thruster are also presented. This work, to our best knowledge, is the first application of space-charge-limited current to the vacuum arc thruster and practically very interesting for engineering design.  相似文献   

6.
The model is presented and the equation system is obtained which describes the nonequilibrium (Knudsen's) region of a cathode jet at the arc discharge burning in vapors of electrode material. The nonequilibrium layer is formed as a result of streaming of cathode-erosion products in the medium with reduced pressure and presents the discontinuity surface of the hydrodynamical region. The equation system was obtained by analyzing the law of conservation of heavy particles in the layer. Calculation results are presented and parameters of a cathode jet in the kinetic layer are discussed. It is shown that this flow is not a free one and its parameters are dependent on energy release in the near-cathode region.  相似文献   

7.
The properties of the ion flux generated in a vacuum arc are reviewed. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of the total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, although some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of the solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory and the gas dynamic theory. Experimental data indicate that these theories serve reasonably well when used to predict the mean values of the charge state, ion potential, and ion energies for the ion flux, but are quite insufficient when compared with the results for the potentials and energies of individual ions  相似文献   

8.
Vacuum arc cathode spot grouping and motion in magnetic fields   总被引:1,自引:0,他引:1  
Two of the important vacuum arc phenomena observed when the arc runs in a transverse magnetic field are cathode spot grouping and the cathode spot retrograde motion, i.e., in the anti-Amperian direction. This paper summarizes the main experimental observations and proposes a physical model for spot grouping and spot retrograde motion. The proposed spot motion model take in account the previous theoretical model of the cathode thermal regime and the plasma flow near the cathode surface that is based on two conditions: i) the heat loss in the cathode bulk is relatively small to the heat influx, and ii) the plasma flow in the Knudsen layer is impeded. In the present model, the current per group spot is calculated by assuming that the plasma kinetic pressure is comparable to the self-magnetic pressure in the acceleration region of cathode plasma jet. The model includes equations for the current per spot group, spot velocity dependence on the magnetic field and on the arc current in vacuum, as well as in gas filled arc gap. The calculated currents per spot group and spot velocity increase linearly with the magnetic field and arc current, and this dependencies well agree with previous observations. The cathode spot retrograde motion in short electrode gaps and at atmospheric pressure arcs, and the reversal motion in strong magnetic fields (>1 T) observed by Robson and Engel are discussed. The details of the retrograde motion observed in the last decades including the spot velocity dependence on the electrode gap, roughness, temperature, and material could be understood in the frame of the proposed model.  相似文献   

9.
A general solution to the problem of the steady-state spherical expansion of a current-carrying multicomponent plasma into a vacuum is derived. It is shown that, in vacuum arc discharges, the main force accelerating the cathode material, which becomes a plasma at distances of 1 to 300 μm from the cathode surface, is the electron pressure gradient force maintained by Joule heating. It is established that ions of different charges move with the same hydrodynamic velocity, which is uniquely determined by the mass and mean charge of the ions and the maximum electron temperature in the cathode region.  相似文献   

10.
This paper reviews the properties of the cathode ion flux generated in the vacuum arc. The structure and distribution of mass erosion from individual cathode spots and the characteristics of current carriers from the cathode region at moderate arc currents are described. An appreciable ion flux (~10% of total arc current) is emitted from the cathode of a vacuum arc. This ion flux is strongly peaked in the direction of the anode, though some ion flux may be seen even at angles below the plane of the cathode surface. The observed spatial distribution of the ion flux is expressed quite well as an exponential function of solid angle. The ion flux is quite energetic, with average ion potentials much larger than the arc voltage, and generally contains a considerable fraction of multiply-charged ions. The average ion potential and ion multiplicity increase significantly for cathode materials with higher arc voltages, but decrease with increasing arc current for a particular material. The main theories concerning ion acceleration in cathode spots are the potential hump theory (PH), which assumes that all ions are created at the same potential, and the gas dynamic theory (GD), which assumes that all ions are created with the same flow velocity. Experimental data on the potentials and energies of individual ions indicates that these theories in their original forms are not quite correct, however extensions or modifications of the PH and GD theories seem very likely to be able to predict correct values for the charge states, potentials, and energies of individual ions.  相似文献   

11.
A miniature laser-triggered high-voltage vacuum switch with a fused KCl and Ni cathode is discussed. The switch uses metal-ceramic construction with a sapphire window in the anode to allow the laser beam to strike the cathode surface. Reliable triggering is achieved with only 20 μJ of laser energy. The switch was operated with a gap voltage ranging from 500 V to 3 kV, with switching currents up to a 5 kA peak. Switch life greater than 1000 shots without performance degradation has been observed on 50 prototype devices. The function time of the switch varies from 10±1 ns at 3 kV to 100±50 ns at 500 V  相似文献   

12.
Zinc ion pulses with varying amplitudes up to 1 mA have been extracted from a vacuum discharge. Repetitive operation of the pulsed discharge at 5300 Hz was maintained for 24 min. Breakdown of the 0.4 mm vacuum gap was accomplished by ramp-charging a 270 pF capacitor connected across the gap until breakdown occurred, the capacitor then being discharged through the gap. Stable operation was maintained by feedback control of the electrode spacing. The anode was eroded at 10 mg/C by the discharge, with 65 percent of the anode material being deposited on the cathode in the form of a fiber.  相似文献   

13.
左应红  王建国  朱金辉  牛胜利  范如玉 《物理学报》2012,61(17):177901-177901
为了研究二极管爆炸电子发射初始阶段阴极表面复杂的物理现象及规律, 建立了由场致电子发射阴极构成的一维平板真空二极管物理模型,通过自行编程数值求解泊松方程, 考虑了发射出的电子对阴极表面电场的非线性影响,自洽模拟得到了阴极表面电场随时间的变化情况. 模拟结果表明,爆炸电子发射初期,阴极表面电场随时间的增加而呈现出不断振荡的规律, 且振荡幅度越来越小,最终到达一个稳态的值,二极管两极板之间的外加电场越大, 阴极表面稳态电场的绝对值越大;电场增强系数越大,阴极表面稳态电场的绝对值越大. 在整个时间演变过程中,阴极表面的实际电场强度决定着阴极发射的电流密度大小, 反过来阴极发射的电流密度又会影响到阴极表面的电场.  相似文献   

14.
Studies of electric breakdown in a high vacuum involving liquid-metal (mercury and gallium) cathodes, whose surfaces are stabilized by centrifugal forces, have shown that an increase in the angular velocity at which the experimental apparatus rotates causes an increase in the breakdown field; the mechanism for the vacuum breakdown is found to be independent of the voltage across the electrodes. According to the Frenkel theory, vacuum breakdown results from a disruption of the steady state on the liquid-cathode surface in an electric field. Drops of liquid metal on the anode degrade the dielectric properties of the vacuum gap. Under these conditions, the breakdown mechanism becomes dependent on the voltage across the electrodes. Oxide films on the cathode surface also degrade the dielectric properties of the vacuum gap. It is suggested that the dielectric may be charged by positive ions emitted from the cathode.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, Vol. 12, No. 4, pp. 44–49, April, 1969.  相似文献   

15.
ECR微波等离子体离子输运的数值模拟   总被引:2,自引:0,他引:2  
建立了ECR微波等离子体源离子输运的平板和圆柱模型,对离子历经的空间区域的输运过程进行了数值研究。采用Monte Carlo(M-C)方法模拟了存在外磁场情况下,离子离开开放电室后历经中性区、鞘层区、最后被加负偏压的工作表面吸收的全过程,考虑了离子与中性粒子的电荷交换碰撞玫弱性散性,统一处理了中性区和鞘层区电势的衔接,采用曲线拟合,电势自洽迭代方法把中性区和鞘层区衔接起来,得到了光滑自治的电势分布曲线和鞘层区不同位置处的速度分布、能量分布及角分布。  相似文献   

16.
Understanding plasma initiation in vacuum arc discharges can help to bridge the gap between nano‐scale triggering phenomena and the macroscopic surface damage caused by vacuum arcs. We present a new twodimensional particle‐in‐cell tool to simulate plasma initiation in direct‐current (DC) copper vacuum arc discharges starting from a single, strong field emitter at the cathode. Our simulations describe in detail how a sub‐micron field emission site can evolve to a macroscopic vacuum arc discharge, and provide a possible explanation for why and how cathode spots can spread on the cathode surface. Furthermore, the model provides us with a prediction for the current and voltage characteristics, as well as for properties of the plasma like densities, fluxes and electric potentials in a simple DC discharge case, which are in agreement with the known experimental values. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
李晓峰  刘如彪  赵学锋 《光子学报》2014,40(9):1438-1441
通过比较有Cs-Sb表面层多碱阴极和未有Cs-Sb表面层多碱阴极的荧光谱,发现有Cs-Sb表面层多碱阴极的荧光谱峰值波长向短波方向“蓝移”以及荧光峰增强的现象.这一现象表明在多碱阴极Na2KSb基层上制作Cs-Sb表面层之后,不仅多碱阴极的逸出功降低,而且 Na2KSb基层的结构也发生了变化.这意味着在相同功率和相同频率入射光照射下,经过表面Cs-Sb处理的Na2KSb基层能够产生更多的跃迁电子并且跃迁能级更高,逸出表面的机率更大,获得的阴极灵敏度更高.这表明Cs-Sb表面层既具有表面效应,又具有体效应.要进一步提高多碱阴极的灵敏度,除进一步降低多碱阴极的逸出功外,还需进一步提高Na2KSb基层的性能,使相同功率和频率的入射光能产生更多的跃迁电子,并且跃迁的能级更高,这就需要进一步改进工艺,提高Na2KSb材料的性能.  相似文献   

18.
Vacuum microarc     
The physics of stationary vacuum microarc in a wide interelectrode gap with the perveance corresponding to a geometry of the Müller electron projector type and the Langmuir-Blodgett function α2≥5 is considered on a qualitative level. Under these conditions, the electric field at the cathode can exhibit a significant (severalfold) increase due to a positive space charge of microarc, which makes field electron emission possible. The most important features of the continuity equation, Poisson equation, and thermal conductivity equation describing this system are considered.  相似文献   

19.
An investigation has been carried out of cathode spot dynamics in a triggered vacuum arc in a demountable chamber. A rectangular current pulse of 1-5 kA, 1-5 ms has been used. Sufficient statistics were collected. The expansion of a cathode spot ring on a clean, pure metal surface was corroborated to be a retrograde movement in the self-magnetic field which obeys the same law as the movement of a single spot in an external magnetic field. The influence of a contact gap of 0.5-8 mm and current on the dynamics of cathode spots was investigated. The gap dependence of the proportional coefficient between the spot velocity and magnetic field in the case of a pure copper cathode was obtained. A phenomenon was discovered, where a group of cathode spots form in the short arcs on the CuCr cathodes after a transition diffuse arc stage. The follow-up investigation revealed that a close interrelation exists between the cathode and anode processes in short arcs. This interrelation is responsible for the appearance of the discovered phenomenon. Short-circuit performance tests conducted for a commercial vacuum interrupter proved cathode spot group formation to be responsible for the interruption failure at short contact gaps  相似文献   

20.
The specific ion erosion γi of cathodes made of C, Mg, Al, Ti, Co, Cu, Y, Mo, Cd, Sm, Ta, W, Pt, Pb, and Bi is determined by measuring the total ion current from the vacuum arc plasma. It is demonstrated that the ratio of the total ion current to the discharge current, αi in a vacuum arc varies from 5 to 19%, depending on the cathode material. It is found experimentally that the ion current fraction αi is inversely proportional to the atomic bond energy of the cathode material. It is shown that an increase in the total ion current extracted from the discharge plasma when applying an external magnetic field to the cathode region of the discharge is related solely to the appearance of ions with higher charge numbers in the plasma, while the magnitude of the specific ion erosion γi remains unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号