首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The polycrystalline solids TiO2Fe2O3, with iron contents in the range 0–10 at.%, prepared by coprecipitation and by impregnation, and treated in air at temperatures in the range 500–1000°C, have been studied by X-ray, ESR, and Mössbauer methods. The TiO2 in the samples treated at 800 and 1000°C always forms the rutile phase and the Fe3+ has a rather low solubility in it (~0.1 at.%). The Fe3+ in excess forms the antiferromagnetic pseudobrookite phase (Fe2TiO5). The samples treated at 500 and 650°C show a dependence on the preparation method. Those prepared by coprecipitation give at 500°C the pure anatase phase in which the Fe3+ has a higher solubility (≥ 1%); those prepared by impregnation give the anatase phase accompanied by a variable amount of rutile. The treatment at 650°C provokes the partial transformation of anatase to rutile and the complete development of the Fe2TiO5 phase. The relevance of these results to the photocatalytic properties shown by these solids for the photoreduction of dinitrogen to ammonia is discussed.  相似文献   

2.
Investigations on Metal Catalysts. XXXII. On Alloying and Dispersion of Nickel-Rhenium Catalysts Unsupported Ni? Re catalysts were prepared by reduction of mixtures from NiO and NH4ReO4 at 400°C with hydrogen (1st series), followed by a heat treatment at 650°C in flowing hydrogen (2nd series). The bimetallic powders were characterized by DTA investigations, X-ray measurements, N2 adsorption, and CO chemisorption. The degree of alloying and the changes in dispersion as a result of adding a second metal to a basic one is discussed.  相似文献   

3.
Trivalent thallium is precipitated in the presence of 0.1 M HNO3 (or 0.05 M H2SO4) and O.1 M NH4NO3 (or 0.05 M (NH4)2SO4) with oxalic acid. The chemical analysis of the salt obtained correspondens to the formula, NH4[Tl(C2O4)2]·3H2O. The thermal decomposition studies of the complex indicate the formation of the intermediates ammonium thallous oxalate (stable from 150° to 160°C) and thallous oxalate (stable up to 290°C) and the final product to be a mixture of 25% of thallous oxide and 75% of thallic oxide (stable from 450° to 650°C). The infrared absorption spectra, X-ray diffraction patterns, microscopic observations and the electrical resistance measurements are used to characterise the complex and the intermediates of its thermal decomposition.  相似文献   

4.
Investigations on Metal Catalysts. XXXIII. Characterization of Nickel-Rhenium Catalysts by Means of Ferromagnetic Resonance Unsupported nickel-rhenium catalysts (prepared by reduction of NiO? NH4ReO4 mixtures at 400°C with hydrogen) were characterized by the method of ferromagnetic resonance. With increasing rhenium content the values of signal intensity, g-factor, and half-width of the resonance line decrease. These facts are indications for the beginning in formation of solid solutions (alloys), which increases by further treatment of the samples at higher temperatures (650°C). The advanced alloying is also indicated by the sign reversal of the anisotropy constant.  相似文献   

5.
(NH4)3[M2NCl10] (M = Nb, Ta): Synthesis, Crystal Structure, and Phase Transition The nitrido complexes (NH4)3[Nb2NCl10], and (NH4)3[Ta2NCl10] are obtained in form of moisture-sensitive, tetragonal crystals by the reaction of the corresponding pentachlorides with NH4Cl at 400 °C in sealed glass ampoules. Both compounds crystallize isotypically in two modifications, a low temperature form with the space group P4/mnc and a high temperature form with space group I4/mmm. In case of (NH4)3[Ta2NCl10] a continuous phase transition occurs between –70 °C and +60 °C. For the niobium compound this phase transition is not yet fully completed at 90 °C. The structure of (NH4)3[Nb2NCl10] was determined at several temperatures between –65 °C und +90 °C to carefully follow the continuous phase transition. For (NH4)3[Ta2NCl10] the structure of the low temperature form was determined at –70 °C, and of the high temperature form at +60 °C. The closely related crystal structures of the two modifications contain NH4+ cations and [M2NCl10]3– anions. The anions with the symmetry D4h are characterized by a symmetrical nitrido bridge M=N=M with distances Nb–N = 184.5(1) pm at –65 °C or 183.8(2) pm at 90 °C, and Ta–N = 184.86(5) pm at –70 °C or 184.57(5) pm at 60 °C.  相似文献   

6.
The various Zn-based sorbents were prepared by physical mixing method and co-precipitation method. The sulfur removing capacity and regeneration properties of the various sorbents were measured in fixed bed reactor at middle temperature condition (sulfidation process 480 °C, regeneration process 580 °C). The sulfur removing capacities of the sorbents were depended on the physical properties such as pore volume, surface area and particle size. The Zn-based sorbents prepared by co-precipitation method were higher pore volume, surface area and smaller particle size resulting in the higher capacities than those prepared by the physical mixing method. To improve the regeneration properties of the sorbents, the various promoters such as cobalt, iron, nickel and cerium were added to the sorbents. The promoters have various roles with the kind of promoter. The roles of promoters could be explained by heat effect and catalytic effect of the promoters. Also, the alloyed structure like spinel structure (ZnTi2O4) has been proposed to explain the superior regeneration properties compared to the single ZnO structure. In addition, the simultaneous removals of the H2S and NH3 over the Zn–Al-based sorbents were tested at 650 °C. So, the new process for simultaneous removal using the developed Zn-based sorbents could be proposed. The role of promoters, effect of hydrogen potential pressure and the deactivation mechanism including the sulfidation of metal oxide to metal sulfide were also discussed.  相似文献   

7.
The glass composition 88SiO2-6Li2O-6Nb2O5 (mole %) was successfully prepared by the sol-gel technique. The dried and translucent gel was heat-treated at temperatures between 500°C and 800°C. Lithium niobate crystallites, an important ferroelectric material, were detected in the gel derived glass-ceramics treated above 650°C. In the samples treated at 700 and 800°C the Li2Si2O5 crystalline phase is present. The 800°C treated sample also presents the Li3NbO4 phase. The structure and morphology of the samples were studied by X-ray powder diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The SEM revealed that all the samples, heat-treated above 650°C, present crystallites embedded in the glass matrix. The particles detected in the 600°C treated sample are essentially amorphous, or with an incipient structure. The temperature dependence of the dc electrical conductivity (σ dc ) shows two regions with different activation energies. The conductivity behaviour of the sample is mainly due to the mobile ion number. The ac conductivity (σ ac ), measured at 1 kHz decreases with the rise of the treatment temperature due to the increase of the LiNbO3 crystallites amount. The electrical behavior of the glass and glass-ceramics reflects the important role carried out by the treatment temperature in the gel-glass structure.  相似文献   

8.
This work explored the potential of clinoptilolite, molybdenum sulphide (MoS2), and MoS2-clinoptilolite composite in lead (Pb) removal from aqueous medium and industrial mining wastewater. MoS2-clinoptilolite composite was successfully prepared by a hydrothermal method. The surface properties, structure, and composition of the synthesized composite and the parent compounds were analyzed by scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. The removal efficiency of lead from aqueous solution was studied in batch-mode experiments. The MoS2-clinoptilolite was used for the removal of Pb ions (50 mg/L) from an aqueous solution: ~100% of the Pb was removed with a MoS2-clinoptilolite dose of 0.075 g, pH 6 at 328K within 90 min. The adsorption capacities of Pb onto MoS2-clinoptilolite were found to be higher than those onto clinoptilolite. Metal ion adsorption behavior was well explained by the Freundlich model, that is, multilayer adsorption of Pb molecules occurred on the heterogeneous surface of adsorbents in case of clinoptilolite, while in the case of MoS2-clinoptilolite, the Langmuir model was suitable, that is, the adsorption occurred on a monolayer surface. The rate of Pb adsorption was explained by pseudo-second-order model suggesting that the adsorption process is presumably chemisorption. Thermodynamic parameters such as ΔH°, ΔS°, and ΔG° were calculated, which indicated that the adsorption was spontaneous and exothermic in nature. The selectivity of each adsorbent for Pb was also tested by adding the adsorbents to real gold mine water which contains competitive metal ions.  相似文献   

9.
Time and Temperature Resolved in situ X-Ray Powder Diffractometry. The Reaction of (NH4)2SnF6 with Ammonia The thermal decomposition of (NH4)2SnF6 under an atmosphere of ammonia is reported. The complicated reaction paths were illucidated by time and temperature resolved in situ x-ray powder diffractometry. It is shown that this technique is a powerful tool to observe structural changes during reaction. It offers also a valuable access to thermodynamic and kinetic data for solid state and gas phase reactions. (NH4)2SnF6 decomposes under ammonia below room temperature to NH4F and amorphous SnF4 · x NH3. At a temperature of 80°C an intermediate product, (NH4)4SnF8, is formed, which decomposes at 140°C into (NH4)2SnF6 and NH4F. At 250°C (NH4)[Sn(NH3)F5] and Sn(NH3)2F4 are formed. The latter crystallises C-centered monoclinic with lattice constants a = 844.1(5) pm, b = 630.5(3) pm, c = 520.2(3) pm and b? = 114.02(7)°. At 330°C a further decomposition yields SnF2(NH2)2 with a C-centered monoclinic cell and lattice constants a = 1 069(7), b = 325.3(2), c = 504.8(3) pm and b? = 105.83(7)°. Finally above 500°C tin metal is formed.  相似文献   

10.
Although the reaction products are unstable at the reaction temperatures, at a heating rate of 2 deg·min?1 ammonium peroxo vanadate, (NH4)4V2O11, decomposes to (NH4)[VO (O2)2 (NH3)] (above 93°C); this in turn decomposes to (NH4) [VO3 (NH3)] (above 106°C) and then to ammonium metavanadate (above 145°C). On further heating vanadium pentoxide is formed above 320°C. The first decomposition reaction occurs in a single step and the Avrami-Erofeev equation withn=2 fits the decomposition data best. An activation energy of 148.8 kJ·mol?1 and a ln(A) value of 42.2 are calculated for this reaction by the isothermal analysis method. An average value of 144 kJ·mol?1 is calculated for the first decomposition reaction using the dynamic heating data and the transformation-degree dependence of temperature at different heating rates.  相似文献   

11.
A series of nickel-exchanged catalysts based on ZSM-5, USY, and Mordenite zeolites has been prepared by the ionic exchange method. The NiZeol catalysts have been characterized by XRD and BET. The exchange levels and nickel contents of the catalysts have been determined by chemical analysis. The acidity of the zeolite supports has been investigated using NH3 adsorption microcalorimetry. The number of acidic sites was found to decrease according to the following sequence: HUSY > HZSM-5 > HMOR. The temperature programmed reduction studies showed that the most reducible catalyst is NiZSM-5. The Ni-exchanged zeolites presented good catalytic performance in the methane reforming by CO2. At a temperature of 650°C, CH4 conversions of 71 and 54% were achieved on NiUSY and NiZSM-5 respectively. At 400°C, CO2 FTIR adsorption has shown that CO2 decomposes into CO and oxygen on NiZSM-5 which explains its reactivity at such a low temperature, while no decomposition of this probe molecule was observed on the NiUSY catalyst. The catalytic performance was found to vary in the following sequence at 650°C: NiUSY > NiZSM-5 > NiMOR. Moreover, the catalytic performances were found to depend strongly on the CO2/CH4 ratio in the feed and were markedly improved for CO2/CH4 greater than 1.  相似文献   

12.
Incorporating amino groups is an efficient strategy for the tuning properties of energetic materials. However, there is no unanimous conclusion on the effect of the number of amino groups (−NH2) on performance. Therefore, in this study, different number of −NH2 of four energetic salts of triazolium based on oxadiazole and triazole were designed and synthesized. The structure features of energetic salts 4 – 6 were then investigated by single-crystal X-ray diffractions and Hirshfeld surfaces analyses. Afterward, the effects of −NH2 were evaluated by thermal stability, impact sensitivity and detonation performance. All these energetic salts were insensitive to mechanical stimulation (IS >40 J), but the thermal decomposition temperatures of energetic salt 5 – 7 with −NH2 are 24 °C to 54 °C higher than energetic salt 4 without −NH2. Moreover, energetic salt 5 with one −NH2 has the highest theoretical detonation properties compared to those without −NH2 ( 4 ) and with two −NH2 ( 6 , 7 ). These observations revealed that appropriate amount of −NH2 can lead to desirable increase in the energetic properties, and this work can offer guidance for the design and synthesis of further energetic salts.  相似文献   

13.
The properties of two silica samples were studied; one sample precipitated by ammonia from a saturated (NH4)2SiF6 solution and the other washed out from the sublimate obtained by joint evaporation of (NH4)2SiF6 and SiO2. These silicas are fundamentally different compounds. Their chemical composition was determined. Evolution of samples during heating to 1000°C was interpreted using chemical analysis, IR spectroscopy, and X-ray powder diffraction. A possibility of removing fluorine and ammonia from test samples by heat and chemical treatment is demonstrated. Fluorine impurities in the form of fluoroammonium salts are removed completely during heating to 300–400°C; surface fluoride ions are removed only upon heating to 800°C.  相似文献   

14.
In the present work, we have synthesized praseodymium(III) chloride, PrCl3, from the praseodymium oxide, Pr6O11, by dry method in the presence of ammonium chloride, NH4Cl. This study includes the establishment of an assembly synthesis under inert gas. The thermal decomposing process of pure NH4Cl was investigated by TG–DTG. The results showed that NH4Cl begins to lose weight at 188 °C, large loss of weight ending at 302 °C when NH4Cl is heated at the rate of 10 °C/min under N2 atmosphere. For chlorination, NH4Cl participates directly in the reaction, and HCl decomposed from NH4Cl also contributes to the chlorination reaction. The influence of various synthesis parameters (temperature, contact time and chemical composition) on the reaction yield was studied, and the optimum conditions for synthesis were, thus, determined and discussed.  相似文献   

15.
LiFePO4 samples have been synthesized by mixing stoichiometric amounts of (NH4)2HPO4, FeC2O4·2H2O, and LiF. During synthesis, carbon gel was used as the carbon source. Single-phase LiFePO4 can be formed when the heating temperature ranges from 650 to 800 °C and it is decomposed into Li4P2O7, Li3PO4, Fe2P, and Li3P7 when the temperature comes to 850 °C. We find that the ratio of the lattice parameter (a/c) decreases with the increasing temperature, thereby increasing the Li+ diffusion channel length. Both the decrease of a/c and the abrupt crystal growth are expected to contribute to the monotonic decrease of the initial capacity of the samples. The sample heated at 650 °C with a smaller uniform particle size and relative higher specific surface area (8.2 m2/g) shows an excellent electrochemical performance. The initial specific capacity of 156.7(3) mAh/g is obtained at the rate of C/10.  相似文献   

16.
Hydrogen storage properties and mechanisms of the Ca(BH4)2‐doped Mg(NH2)2–2 LiH system are systematically investigated. It is found that a metathesis reaction between Ca(BH4)2 and LiH readily occurs to yield CaH2 and LiBH4 during ball milling. The Mg(NH2)2–2 LiH–0.1 Ca(BH4)2 composite exhibits optimal hydrogen storage properties as it can reversibly store more than 4.5 wt % of H2 with an onset temperature of about 90 °C for dehydrogenation and 60 °C for rehydrogenation. Isothermal measurements show that approximately 4.0 wt % of H2 is rapidly desorbed from the Mg(NH2)2–2 LiH–0.1 Ca(BH4)2 composite within 100 minutes at 140 °C, and rehydrogenation can be completed within 140 minutes at 105 °C and 100 bar H2. In comparison with the pristine sample, the apparent activation energy and the reaction enthalpy change for dehydrogenation of the Mg(NH2)2–2 LiH–0.1 Ca(BH4)2 composite are decreased by about 16.5 % and 28.1 %, respectively, and thus are responsible for the lower operating temperature and the faster dehydrogenation/hydrogenation kinetics. The fact that the hydrogen storage performances of the Ca(BH4)2‐doped sample are superior to the individually CaH2‐ or LiBH4‐doped samples suggests that the in situ formed CaH2 and LiBH4 provide a synergetic effect on improving the hydrogen storage properties of the Mg(NH2)2–2 LiH system.  相似文献   

17.
Nanocrystalline titanium dioxide (TiO2) powders have been synthesized by sol–gel method using titanium tetrachloride (TiCl4) or tetrabutyl titanate (Ti(OC4H9)4 as precursors, different alcohols and calcination temperatures in the range from 400 to 650 °C. The photocatalytic activity of as-prepared powders has been tested for the degradation of metoprolol tartrate salt, a selective β-blocker used to treat a variety of cardiovascular diseases, and compared to photocatalytic activity obtained from Degussa P25. Nanosized TiO2 powders prepared from TiCl4 and amyl-alcohol, calcined at 550 °C, displayed an activity comparable to Degussa P25, whereas the sample from the same series, calcined at 650 °C, showed higher photocatalytic activity in the whole range of the catalyst loading. Structural, morphological and surface properties of synthesized TiO2 nanopowders have been investigated by XRD, SEM, EDS and BET measurements, as well as FTIR and Raman spectroscopy, in order to find out the material properties which enable rapid an efficient decomposition of metoprolol under UV radiation.  相似文献   

18.
The crystallization process of some glasses in the ternary Na2O–SiO2–PbO system with good chemical stability that can be used for waste inertization was studied using X-ray diffraction (XRD), infrared spectroscopy (FT-IR), differential thermal analysis (DTA) and scanning electron microscopy. The parent glasses were characterized by XRD and FT-IR, and their vitreous state was determined. DTA measurements evidenced glass transition (T g) and crystallization temperatures (T c). The thermal treatments were conducted at vitreous transition temperature (400 °C) and at highest effect of crystallization (650 °C). XRD evidenced the lead and sodium silicate crystalline phases in samples treated at 650 °C for 12 h. Micrometer crystallites dispersed in the glass matrices have affected the transparence of glasses and made them opaque after treatment at 650 °C. The influence of oxide quantities in compositions on the crystallization tendency was revealed. A PbO higher content than that of SiO2 as well as lower Na2O content decreased the tendency of crystallization.  相似文献   

19.
Nano-sized NaNbO3 powder has been successfully prepared by aqueous solution-gel method. The phase evolution of NaNbO3 powder is investigated by TG/DSC, X-rays spectra, FT-IR, and Raman spectra. The results show that the pure NaNbO3 phase has been obtained at about 375 °C, which is lowered by about 100 °C comparing to others’ work. In TEM studied, it shows the average particle size of ~ 70 nm for the powders heat-treated at 750 °C for 4 h. The powders heat-treated below 650 °C for 4 h shows a Pmnm symmetry, then change from O3 orthorhombic to O1 orthorhombic with the heat-treatment temperature above 650 °C.  相似文献   

20.
The X‐ray crystal structures of Hg(C6F4X‐p)2 (X = NH2, OMe, or Me) show the compounds to have almost linear C–Hg–C stereochemistry (X = NH2, 176.3(4)°; X = OMe, 179.5(2)°; X = Me, 176.3(2)°), and the two tetrafluoroaryl rings rotated ca. 52–62° with respect to each other. Substantial conjugation of NH2 and OMe groups with the aromatic rings is evident from N–C and O–C(Ar) distances. For X = NH2 or OMe, two weak N(O)–Hg coordination interactions per mercury lead to a two dimensional supramolecular chain structure containing pairs of π‐stacked aromatic rings at near van der Waals contact distances rotated at 62.2° (X = NH2) or 52.9° (X = OMe) to each other. In Hg(C6F4Me‐p)2, which does not have potential donor atoms, no supramolecular structure is obtained, the molecules being laterally displaced from one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号