首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
This is the second in a pair of articles that classify the configuration space and kinematic symmetry groups for N identical particles in one-dimensional traps experiencing Galilean-invariant two-body interactions. These symmetries explain degeneracies in the few-body spectrum and demonstrate how tuning the trap shape and the particle interactions can manipulate these degeneracies. The additional symmetries that emerge in the non-interacting limit and in the unitary limit of an infinitely strong contact interaction are sufficient to algebraically solve for the spectrum and degeneracy in terms of the one-particle observables. Symmetry also determines the degree to which the algebraic expressions for energy level shifts by weak interactions or nearly–unitary interactions are universal, i.e. independent of trap shape and details of the interaction. Identical fermions and bosons with and without spin are considered. This article analyzes the symmetries of N particles in asymmetric, symmetric, and harmonic traps; the prequel article treats the one, two and three particle cases.  相似文献   

2.
The distribution function W0(n0) of the number n0 of particles in the condensate of an ideal Bose gas confined by a trap is found. It is shown that at the temperature below the critical temperature Tc this function has a Gaussian shape and depends on the trap potential via two parameters only. The center of this function shifts to larger values of n0 with decreasing temperature and its width tends to zero, which corresponds to the suppression of fluctuations. In the narrow vicinity of the critical temperature \(\left| {T - {T_c}} \right| \leqslant {T_c}/\sqrt N \), where N is the number of particles in the trap, the distribution function changes and at the temperature above the critical one it takes the usual form W0(n0) = [1 ? exp(μ)]exp(μn0), where μ is the chemical potential in temperature units. In the limit N→∞, this change occurs at a jump.  相似文献   

3.
We present an ultra-high resolution spectroscopic study of the photoassociation of cesium atoms inside a magnetooptical trap using trap-loss detection with photoassociation laser slow scanning. The photoassociation spectra show vibrational levels of three molecular symmetries below the 6S 1/2 + 6P 3/2 dissociation limit. A dynamic model is derived to extract the photoassociation rate from the trap-loss spectrum. Many observed rotational levels are well resolved, which indicate d-wave and higher partial wave contributions to the photoassociation cross section.  相似文献   

4.
We study the equilibrium phase diagram of a generalized ABC model on an interval of the one-dimensional lattice: each site i=1,…,N is occupied by a particle of type α=A,B,C, with the average density of each particle species N α /N=r α fixed. These particles interact via a mean field nonreflection-symmetric pair interaction. The interaction need not be invariant under cyclic permutation of the particle species as in the standard ABC model studied earlier. We prove in some cases and conjecture in others that the scaled infinite system N→∞, i/Nx∈[0,1] has a unique density profile ρ α (x) except for some special values of the r α for which the system undergoes a second order phase transition from a uniform to a nonuniform periodic profile at a critical temperature \(T_{c}=3\sqrt{r_{A} r_{B} r_{C}}/2\pi\).  相似文献   

5.
We compute the energy needed to add or remove one particle from a homogeneous system of N bosons on a torus. We focus on the mean-field limit when N becomes large and the strength of particle interactions is proportional to \(N^{-1}\), which allows us to justify Bogoliubov’s approximation.  相似文献   

6.
It is shown that a moving neutral particle interacting with electrons may cause an “electron drag” within a filled band. The calculation uses perturbation theory and periodic boundary conditions and is based on the one-electron model. WithN being the number and ¯v the average velocity of the electrons, one finds that for largeN the electronic velocity sumN¯v induced by the motion of the neutral particle is independent ofN, i.e. of the size of the system. The lowest-order contributions toN¯v that do not necessarily vanish are seen to be those of second order in the interaction potential. These second-order contributions are studied. In a simple one-dimensional model they are found to be, in fact, not necessarily zero and to be proportional to the velocity of the neutral particle. An order-of-magnitude formula forN¯v is derived for this case. The calculation suggests that mobile neutral particles may act as charge carriers, their effective charge possibly being much smaller than the elementary charge. In real systems, neutral particles which interact with electrons might be represented by phonons and excitons.  相似文献   

7.
We explore the cosmological implications of the interactions among the dark particles in the dark SU(2) R model. It turns out that the relevant interaction is between dark energy and dark matter, through a decay process. With respect to the standard ΛCDM model, it changes only the background equations. We note that the observational aspects of the model are dominated by degeneracies between the parameters that describe the process. Thus, only the usual Λ CDM parameters such as the Hubble expansion rate and the dark energy density parameter (interpreted as the combination of the densities of the dark energy doublet) could be constrained by observations at this moment.  相似文献   

8.
G. Watanabe 《Laser Physics》2007,17(4):533-537
We study interacting condensates in anisotropic traps. Employing a two-level mean-field theory, which is valid provided the interaction energy is much smaller than ?ωx and ?ωy and the number of particles N is much larger than unity, we see that even a small interaction can drastically modify the dynamics of the system as predicted by García-Ripoll et al. [Phys. Rev. Lett. 87, 140403 (2001)]. In the present work, we supplement the discussion of the previous work and point out the important role of coupling between population difference and phase difference between two p states in the x and y directions. We also explore the stability of the vortex state for small systems with NO(1), for which the mean-field theory is inapplicable. We performed the full quantum mechanical calculations using up to six single-particle states and showed that, when N is comparable to unity, quantum tunneling between the vortex and antivortex states can occur even though the interaction coefficient is so large that the vortex-antivortex oscillation is prohibited within the mean-field theory.  相似文献   

9.
A conventional shell model calculation has been made for some odd-parity states of N14 assuming them to arise from the configurationsp 9 d andp 9 2s. Especially we study the limit, when the inequivalent particle is coupled in thejj-scheme to the p-shell configurations. Then a satisfactory picture can be given of the lowest 0?, 0 and 3?, 0 level, supposed that the well depth of the interaction potential between the outer particle and thep-shell is chosen properly.  相似文献   

10.
We consider a quantum particle interacting with N obstacles, whose positions are independently chosen according to a given probability density, through a two-body potential of the form N2V (Nx) (Gross-Pitaevskii potential). We show convergence of the N dependent one-particle Hamiltonian to a limiting Hamiltonian where the quantum particle experiences an effective potential depending only on the scattering length of the unscaled potential and the density of the obstacles. In this sense our Lorentz gas model exhibits a universal behavior for N large. Moreover we explicitely characterize the fluctuations around the limit operator. Our model can be considered as a simplified model for scattering of slow neutrons from condensed matter.  相似文献   

11.
The main result in this paper is a new inequality bearing on solutions of the N-body linear Schrödinger equation and of the mean field Hartree equation. This inequality implies that the mean field limit of the quantum mechanics of N identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of C1,1 interaction potentials. The quantity measuring the approximation of the N-body quantum dynamics by its mean field limit is analogous to the Monge–Kantorovich (or Wasserstein) distance with exponent 2. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13, 115–123, (1979)]. Our approach to this problem is based on a direct analysis of the N-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.  相似文献   

12.
Generalized string orders and entanglement spectrum of S = 1/2 and S = 1 Heisenberg bond-alternating chains have been investigated by the infinite time-evolving block decimation (iTEBD) method. Generalized string order parameters with appropriate θ are capable of distinguishing all the topological phases. Central charges c ? 1 and critical exponents β ?1/12 indicate all the topological QPTs belong to the Gaussian universality class. Interestingly, odd- and even-fold degeneracies of the entanglement spectrum are observed. Even-fold (doubly) degenerate entanglement spectra and the typical two-fold degenerate lowest-lying level are found to exist in both the spin-1/2 dimer and the S = 1 Haldane phases. However, odd-fold degenerate entanglement spectra with three-fold degenerate lowest-lying level are observed in both the S = 1 dimer and the S = 2 Haldane phase. The degeneracy of the lowest-lying entanglement spectrum level, which can be understood by entanglement spectra in the dimer limit (J 1 = 0), is adopted to estimate the lowest boundary of the bipartite entanglement. The entanglement spectrum and the generalized string orders are valuable for uncovering the underlying features of these symmetry-protect topological (SPT) states. Similar entanglement spectrum shows that the S = 1 (S = 2) Haldane phase is essentially the same as the S = 1/2 (S = 1) dimer phase.  相似文献   

13.
In this review, we consider an N = 4 supersymmetric SU(3N) gauge theory defined on the Minkowski spacetime. Then we apply an orbifold projection leading to an N = 1 supersymmetric SU(N)3 model, with a truncated particle spectrum. Then, we present the dynamical generation of (twisted) fuzzy spheres as vacuum solutions of the projected field theory, breaking the SU(N)3 spontaneously to a chiral effective theory with unbroken gauge group the trinification group, SU(3)3.  相似文献   

14.
15.
The mean number ?Nb〉 of particles evaporated in the interaction of 22Ne, 32S, and 56Fe nuclei with photoemulsion nuclei was measured as a function of the number of alpha particles emitted within the fragmentation cone. It is found that ?Nb〉 decreases with increasing number of the alpha particles and increases with increasing number of projectile nucleons involved in the interaction with a target nucleus and that ? Nb〉 is a linear function of the excitation energy Eex of the target-nucleus residue. The maximum experimental value of the mean number of evaporated particles is ?Nbmax〉 ? 12–13, which corresponds to Eexc ? 540 ± 60 MeV.  相似文献   

16.
A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.  相似文献   

17.
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = {n 1, n 2, ..., n g , ...}, where n g is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W(Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.  相似文献   

18.
The effect of Coulomb interaction between Dirac fermions on the formation of the Kohn-Luttinger superconducting state in bilayer doped graphene is studied disregarding of the effect of the van der Waals potential of the substrate and impurities. The phase diagram determining the boundaries of superconductive domains with different types of symmetry of the order parameter is built using the extended Hubbard model in the Born weak-coupling approximation with allowance for the intratomic, interatomic, and interlayer Coulomb interactions between electrons. It is shown that the Kohn-Luttinger polarization contributions up to the second order of perturbation theory in the Coulomb interaction inclusively and an account for the long-range intraplane Coulomb interactions significantly affect the competition between the superconducting phases with the f-, p + ip-, and d + id-wave symmetries of the order parameter. It is demonstrated that the account for the interlayer Coulomb interaction enhances the critical temperature of the transition to the superconducting phase.  相似文献   

19.
The ABN ?1 chain is a system that consists of repeating a unit cell withN siteswhere between the A and B sites there is an energy difference ofλ. Weconsidered bosons in these special lattices and took into account the kinetic energy, thelocal two-body interaction, and the inhomogenous local energy in the Hamiltonian. We foundthe charge density wave (CDW) and superfluid and Mott insulator phases, and constructedthe phase diagram for N =2 and 3 atthe thermodynamic limit. The system exhibited insulator phases for densitiesρ =α/N, with α being an integer. Weobtained that superfluid regions separate the insulator phases for densities larger thanone. For any N value, we found that for integer densitiesρ, thesystem exhibits ρ +1 insulator phases, a Mott insulator phase, and ρ CDW phases. Fornon-integer densities larger than one, several CDW phases appear.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号