首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A general dynamic Monte Carlo model for exciton dissociation at a donor-acceptor interface that includes exciton delocalization and hot charge separation is developed to model the experimental behavior observed for the poly(3-hexylthiophene):fullerene system and predict the theoretical performance of future materials systems. The presence of delocalized excitons and the direct formation of separated charge pairs has been recently measured by transient photo-induced absorption experiments and has been proposed to facilitate charge separation. The excess energy of the exciton dissociation process has also been observed to have a strong correlation with the charge separation yield for a series of thiophene based polymer:fullerene systems, suggesting that a hot charge separation process is also occurring. Hot charge separation has been previously theorized as a cause for highly efficient charge separation. However, a detailed model for this process has not been implemented and tested. Here, both conceptual models are implemented into a dynamic Monte Carlo simulation and tested using a simple bilayer donor-acceptor system. We find that exciton delocalization can account for a significant reduction in geminate recombination when compared to the traditional, bound polaron pair model. In addition, the hot charge separation process could further reduce the geminate recombination, but only if the hot charge mobility is several orders of magnitude larger than the standard charge mobility.  相似文献   

2.
近年来,铁电材料作为一种潜在的高活性光催化剂材料越来越多地受到研究者关注.由于晶体结构的对称性破缺导致铁电晶体中出现自发极化,在这种极化内建电场的影响下,光生电子-空穴将发生空间分离,从而有效抑制载流子复合,进一步提高光催化体系的总量子效率.文献报道了很多性能优异的铁电光伏器件,在这样的思路下,越来越多的材料被直接作为光催化材料来研究,但有关顺电-铁电差异的报道很少,铁电性与光催化性能关联的直接证据尚有欠缺.研究表明, SrxBa1-xNb2O6(SBN)材料的居里温度(TC)对组分调变有很强的依赖性,当 Sr2+含量发生改变时(x =0.32-0.82),其居里温度可在10-270oC范围内变化.因此,合成一个居里温度接近室温的 SBN材料,研究其在顺/铁电相下自发极化行为、光生电荷分离行为、光催化行为及结构演变,就可能得到一个关于铁电性与光催化性能关系的直接证据,并有助于理解二者的关联性.本文以较低温度(65°C)下发生铁-顺电相变的 Sr0.7Ba0.3Nb2O6(SBN-70)材料为模型体系,使用X射线衍射、紫外可见光谱及不同温度下的铁电及介电测试、光电测试、光催化产氢和荧光激发谱等表征技术,研究了 SBN-70光电/光催化性能差异与相结构的相关性.首先使用高温固相合成法制备了纯相的四方钨青铜型 SBN-70材料,根据紫外可见漫反射光谱表征结果,推测 SBN-70材料在热力学上可发生光催化水分解反应.对 SBN-70进行的铁电及介电测试表明 SBN-70属于典型的弛豫型铁电材料:介电峰温度宽化显著,且介电峰位置随不同测试频率发生变化.在f =1 kHz测试下,其名义居里温度约为65oC.使用高温下两步烧结法制备了致密的 Ag/SBN-70/Ag陶瓷样品.受到高强度电场(E =30 kV/cm)极化的 Ag/SBN-70/Ag样品在紫外光照射下出现了显著光伏效应,铁电回线测试表明极化后的 SBN-70材料中存在强度约为0.8 kV/cm由剩余极化导致的内建电场,当经过极化的 SBN-70经过80oC退火后,光伏效应消失.结果表明, SBN-70极化后在内建极化场的作用下,在低温铁电相表现了显著的光生电荷分离能力,在进入高温顺电相后,这种分离能力随着自发极化的消失而消失.同时我们发现担载 Pt的 SBN-70粉末样品作为光催化剂在不同温度下存在很大的光催化产氢活性差异:反应在15oC时,产氢量为4.5μmol,随着反应温度升高,其产氢量升高,在60oC时为5.3μmol,继续升高温度至80oC时,发生了反常的活性变化,即产氢活性完全消失.这种反常的活性-温度关系可能与 SBN-70的铁-顺电相变有关:进入高温顺电相(80oC)后,晶体结构回到4/mmm点群,铁电畴结构不再存在,从而丧失了作为电荷分离驱动力的自发极化.不同温度下荧光激发谱结果也暗示了 SBN-70在高于65oC附近极化结构的消失.本文结果表明,铁电相中存在的铁电极化结构确实有利于光生电荷分离,进而提高了光催化反应活性.  相似文献   

3.
Rheology and phase separation were investigated for aqueous mixtures of two oppositely charged hydrophobically modified polyelectrolytes. The typical phase separation, normally seen for oppositely charged polymer mixtures, is dramatically reduced by the presence of hydrophobic modification, and phase separation is only detected close to the point of charge neutralization. While the two polyelectrolytes separately can give high viscosities and a gel-like behavior, a pronounced maximum in viscosity and storage modulus with the mixing ratio of the polyelectrolytes is observed; the maximum is located between the points of charge and hydrophobe stoichiometry and reflects a combination of hydrophobic and electrostatic association. Lowering the charge density of the anionic polymer leads to a strengthened association at first, but at lower charge densities there is a weakened association due to the onset of phase separation. The strength of the electrostatic interaction was modified by adding salt. Increased ionic strength can lead to phase separation and to increased or decreased viscosity depending on the polyelectrolyte mixing ratio.  相似文献   

4.
The rise of biosimilar monoclonal antibodies has renewed the interest in monoclonal antibody (mAb) charge variants composition and separation. The sample displacement chromatography (SDC) has the potential to overcome the low separation efficiency and productivity associated with bind-elute separation of mAb charge variants. SDC in combination with weak cation exchanging macroporous monolithic chromatographic column was successfully implemented for a separation of charge variants and aggregates of monoclonal IgG under overloading conditions. The charge variants composition was at-line monitored by a newly developed, simple and fast analytical method, based on weak cation exchange chromatography. It was proven that basic charge variants acted as displacers of IgG molecules with lower pI, when the loading was performed 1 to 1.5 pH unit below the pI of acidic charge variants. The efficiency of the SDC process is flow rate independent due to a convection-based mass transfer on the macroporous monolith. The productivity of the process at optimal conditions is 35 mg of purified IgG fraction per milliliters of monolithic support with 75–80% recovery. As such, an SDC approach surpasses the standard bind-elute separation in the productivity for a factor of 3, when performed on the same column. The applicability of the SDC approach was confirmed for porous particle-based column as well, but with 1.5 lower productivity compared to the monoliths.  相似文献   

5.
An analysis of theoretical modeling results of ultrafast kinetics of photoinduced intramolecular charge separation from the second excited singlet state in the dyad Zn-tetraphenylporphyrin-aminonaphthalenediimide (Zn-TPP-ANDI) in a solution of toluene is presented. The calculations are performed within the framework of the stochastic multi-channel model, which includes four electron states (the ground, first and second excited singlet states, the state with charge separation), as well as their vibration sublevels corresponding to the excitation of highfrequency intramolecular vibration modes. A bimodal kinetic curve of population of the state with charge separation observed in experiments is quantitatively reproduced. The absolute yield values of the state with charge separation are determined. The results of the modeling show that intramolecular modes make a significant contribution to the reorganization of low-frequency modes. Quantum chemical calculations were performed, determining the degrees of freedom related to the intramolecular slow motion of nuclei of high amplitude in the dyad Zn-TPPANDI on going from the ground state to the state with charge separation.  相似文献   

6.
Platinum is a commonly used cocatalyst for improved charge separation and surface reactions in photocatalytic water splitting. It is envisioned that its practical applications can be facilitated by further reducing the material cost and improving the efficacy of Pt cocatalysts. In this direction, the use of atomically controlled Pd@Pt quasi‐core–shell cocatalysts in combination with TiO2 as a model semiconductor is described. As demonstrated experimentally, the electron trapping necessary for charge separation is substantially promoted by combining a Schottky junction with interfacial charge polarization, enabled by the three‐atom‐thick Pt shell. Meanwhile, the increase in electron density and lattice strain would significantly enhance the adsorption of H2O onto Pt surface. Taken together, the improved charge separation and molecular activation dramatically boost the overall efficiency of photocatalytic water splitting.  相似文献   

7.
Distribution of the plasmon-induced charge separation sites at the Ag nanorod-TiO(2) interface is visualized by AFM. The charge separation sites are localized in almost the same way as electric fields around the nanorods, indicating that the charge separation is induced or promoted by the localized electric fields.  相似文献   

8.
It is shown that the elemental composition of a product ion generated from a multiply charged ion in a charge separation reaction can be determined with a double focusing instrument under conditions of high mass and energy resolution. Results for a number of charge separation reactions in benzylamine are briefly discussed.  相似文献   

9.
We report on photoinduced charge separation in solid films of two perylene diimides; intramolecular charge separation and recombination is correlated with a reduction in the yield of long-lived, intermolecular charge-separated species.  相似文献   

10.
《中国化学快报》2023,34(2):107468
Realizing efficient charge separation and directional transfer is a challenge for single-component semiconductors. The spatial electric field generated by dipole moment could promote charge separation. Here, three-dimensional hierarchical CuCo2S4 microspheres with lattice distortion were prepared, and lattice distortion was modulated by changing feed Co/Cu molar ratios in synthesis. CuCo2S4 showed asymmetric crystal structure, leading to generation of dipole moment. The charge separation efficiency of CuCo2S4 was related to lattice distortion, and lattice expansion was in favor for charge separation. The CuCo2S4 with feed Cu/Co molar ratio of 1:4 (CCS-4) showed the maximum lattice expansion and exhibited the highest photocatalytic activity, which was attributable to the highest charge separation efficiency and the largest specific surface area. CCS-4 can remove 95.4% of tetracycline hydrochloride within 40 min photocatalysis, and effectively improve the biodegradability of pharmaceutical wastewater. Importantly, this study provides a new vision for constructing single-component photocatalysts with high photocatalytic performance.  相似文献   

11.
The streaming potentials of two different nanofiltration membranes were studied with several electrolyte solutions to investigate the influence of salt type and concentration on the zeta potential and kinetic surface charge density of the membranes. The zeta potentials decreased with increasing salt concentration, whereas the kinetic surface charge densities increased. The kinetic surface charge densities could be described by Freundlich isotherms, except in one case, indicating that the membranes had a negligible surface charge. The kinetic surface charge density observed was caused by adsorbed anions. Salt retention measurements showed different mechanisms for salt separation for the two investigated membranes. One membrane showed a salt retention that could be explained by a Donnan exclusion type of separation mechanism, whereas for the other membrane the salt rejection seemed to be a combination of size and Donnan excluion. Comparing the results obtained by the streaming potential measurements with those of the retention measurements, it could be concluded that the membrane with the highest kinetic surface charge density showed the Donnan exclusion type of separation, whereas the membrane with the lower surface charge density showed a separation mechanism that was not totally determined by Donnan exclusion, size effects seemed to play a role as well.  相似文献   

12.
Recent experimental studies show that electrokinetic phenomena such as electroosmosis and electrophoresis can be used to separate nanoparticles on the basis of their size and charge using nanopore‐based devices. However, the efficient separation through a nanopore depends on a number of factors such as externally applied voltage, size and charge density of particle, size and charge density of membrane pore, and the concentration of bulk electrolyte. To design an efficient nanopore‐based separation platform, a continuum‐based mathematical model is used for fluid. The model is based on Poisson–Nernst–Planck equations along with Navier–Stokes equations for fluid flow and on the Langevin equation for particle translocation. Our numerical study reveals that membrane pore surface charge density is a vital parameter in the separation through a nanopore. In this study, we have simulated high‐density lipoprotein (HDL) and low‐density lipoprotein (LDL) as the sample nanoparticles to demonstrate the capability of such a platform. Numerical results suggest that efficient separation of HDL from LDL in a 0.2 M KCL solution (resembling blood buffer) through a 150 nm pore is possible if the pore surface charge density is ~ ?4.0 mC/m2. Moreover, we observe that pore length and diameter are relatively less important in the nanoparticle separation process considered here.  相似文献   

13.
The dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing diphenylacetylene-4,4'-dicarboxamide linkers have been investigated by means of femtosecond time-resolved transient absorption spectroscopy. The lowest excited singlet state of the linker is capable of oxidizing nearest neighbor adenine as well as guanine. A large wavelength shift in the transient absorption spectrum accompanies the conversion of the singlet linker to its anion radical, facilitating the investigation of electron-transfer dynamics. The rate constants for charge separation are dependent upon the oxidation potentials of the neighboring nucleobase donors but not upon the identity of nonnearest neighbors. Thus, the charge separation processes yield a contact radical ion pair in which the positive charge is localized on the neighboring nucleobase. Rate constants for charge recombination are dependent upon the identity of the first and second nearest-neighbor nucleobases but not more remote bases. This dependence is attributed to stabilization of the contact radical ion pair by interaction with its nearest neighbor. The absence of charge migration to form a base-pair separated radical ion pair is a consequence of Coulombic attraction in the contact radical ion pair and the low effective dielectric constant (epsilon < 7) experienced by the contact radical ion pair. Photoinduced charge injection to form a base-pair separated radical ion pair is necessary in order to observe charge migration.  相似文献   

14.
The electronic structures and dynamics of photoinduced charge separation and recombination in a new donor/acceptor quartet molecule with bis-oligothiophene (BOTH) and bis-perylenediimide (BPDI) blocks attached to a benzene ring were described. Detailed transient spectroscopic studies were carried out on this compound and reference compounds at isolated molecular levels in solution. Two different dynamics of charge separation and recombination associated with two types of donor/acceptor pair conformations in solution were observed. These results were discussed based on Marcus theory and ascribed to both through-bond and through-space electron-transfer processes associated with two different orientations of the acceptors relative to the donor group. This molecular system exhibits a more efficient charge separation than charge recombination processes in both polar and nonpolar organic solvents, indicating that the material is an interesting candidate for photovoltaic studies in solid state.  相似文献   

15.
Charge separation is one of the most crucial processes in photochemical dynamics of energy conversion, widely observed ranging from water splitting in photosystem II (PSII) of plants to photoinduced oxidation reduction processes. Several basic principles, with respect to charge separation, are known, each of which suffers inherent charge recombination channels that suppress the separation efficiency. We found a charge separation mechanism in the photoinduced excited-state proton transfer dynamics from Mn oxides to organic acceptors. This mechanism is referred to as coupled proton and electron wave-packet transfer (CPEWT), which is essentially a synchronous transfer of electron wave-packets and protons through mutually different spatial channels to separated destinations passing through nonadiabatic regions, such as conical intersections, and avoided crossings. CPEWT also applies to collision-induced ground-state water splitting dynamics catalyzed by Mn4CaO5 cluster. For the present photoinduced charge separation dynamics by Mn oxides, we identified a dynamical mechanism of charge recombination. It takes place by passing across nonadiabatic regions, which are different from those for charge separations and lead to the excited states of the initial state before photoabsorption. This article is an overview of our work on photoinduced charge separation and associated charge recombination with an additional study. After reviewing the basic mechanisms of charge separation and recombination, we herein studied substituent effects on the suppression of such charge recombination by doping auxiliary atoms. Our illustrative systems are X–Mn(OH)2 tied to N-methylformamidine, with X=OH, Be(OH)3, Mg(OH)3, Ca(OH)3, Sr(OH)3 along with Al(OH)4 and Zn(OH)3. We found that the competence of suppression of charge recombination depends significantly on the substituents. The present study should serve as a useful guiding principle in designing the relevant photocatalysts.  相似文献   

16.
Molecular systems that follow the functional principles of photosynthesis have attracted increasing attention as a method for the direct production of solar fuels. This could give a major carbon-neutral energy contribution to our future society. An outstanding challenge in this research is to couple the light-induced charge separation (which generates a single electron-hole pair) to the multielectron processes of water oxidation and fuel generation. New design considerations are needed to allow for several cycles of photon absorption and charge separation of a single artificial photosystem. Here we demonstrate a molecular system with a regenerative photosensitizer that shows two successive events of light-induced charge separation, leading to high-yield accumulation of redox equivalents on single components without sacrificial agents.  相似文献   

17.
A series of arrays for light‐driven charge separation is presented, in which perylene tetracarboxylic bisimide is the light‐absorbing chromophore and electron acceptor, whereas isoxazolidines are colourless electron donors, the electron‐releasing properties of which are increased with respect to the amino group by means of the α‐effect. Charge separation (CS) in toluene over a distance ranging from ≈10 to ≈16 Å, with efficiencies of ≈95 to ≈50 % and CS lifetimes from 300 ps to 15 ns, are demonstrated. In dichloromethane the charge recombination reaction is faster than charge separation, preventing accumulation of the CS state. The effects of solvent polarity and molecular structure are discussed in the frame of current theories.  相似文献   

18.
Photoinduced electron transfer and charge separation processes in zinc phthalocya-nine-viologen linked system have been studied and the distance effect of donor/acceptor on electron transfer reaction is discussed. It is indicated that the fluorescence from the zinc phthalocyanine moiety is appreciably quenched and the life-time of singlet excited state is reduced by the pendant viologen. Time-resolved transient absorption spectra measurements show that intramolecular quenching of the triplet state of zinc phthalocyanine by the attached viologen results in charge separation giving reduced viologen radical alive for a rather long period with hundred microsecond duration. The effect of the carbon chain length on the electron transfer rate constant and charge separation efficiency suggests that upon excitation, the zinc phthalocyanine and viologen groups tend to take closer conformation with the increase of the carbon chain examined. The rate constant for the intramolecular electron transfer ket with n = 3  相似文献   

19.
The excited-state behavior of synthetic DNA dumbbells possessing stilbenedicarboxamide (Sa) linkers separated by short A-tracts or alternating A-T base-pair sequences has been investigated by means of fluorescence and transient absorption spectroscopy. Electronic excitation of the Sa chromophores results in conversion of a locally excited state to a charge-separated state in which one Sa is reduced and the other is oxidized. This symmetry-breaking process occurs exclusively via a multistep mechanism-hole injection followed by hole transport and hole trapping-even at short distances. Rate constants for charge separation are strongly distance-dependent at short distances but become less so at longer distances. Disruption of the A-tract by inversion of a single A-T base pair results in a pronounced decrease in both the rate constant and efficiency of charge separation. Hole trapping by Sa is highly reversible, resulting in rapid charge recombination that occurs via the reverse of the charge separation process: hole detrapping, hole transport, and charge return to regenerate the locally excited Sa singlet state. These results differ in several significant respects from those previously reported for guanine or stilbenediether as hole traps. Neither charge separation nor charge recombination occur via a single-step superexchange mechanism, and hole trapping is slower and detrapping faster when Sa serves as the electron donor. Both the occurrence of symmetry breaking and reversible hole trapping by a shallow trap in a DNA-based system are without precedent.  相似文献   

20.
Semiconductor photocatalysis as a desirable technology shows great potential in environmental remediation and renewable energy generation, but its efficiency is severely restricted by the rapid recombination of charge carriers in the bulk phase and on the surface of photocatalysts. Polarization has emerged as one of the most effective strategies for addressing the above‐mentioned issues, thus effectively promoting photocatalysis. This review summarizes the recent advances on improvements of photocatalytic activity by polarization‐promoted bulk and surface charge separation. Highlighted is the recent progress in charge separation advanced by different types of polarization, such as macroscopic polarization, piezoelectric polarization, ferroelectric polarization, and surface polarization, and the related mechanisms. Finally, the strategies and challenges for polarization enhancement to further enhance charge separation and photocatalysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号