首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Raman spectra of alkali and alkaline-earth borate glasses are reported. These spectra are used to discuss the molecular structure of the glasses. The influence of additions of Al2O3 on the structure of alkali borate glasses is also presented. The experimental evidence indicates that the same type of groups are present in borate glasses as in crystalline borates. The presence of tetraborate, metaborate, pyroborate and orthoborate groups in borate glasses is strongly suggested by the Raman spectra.  相似文献   

2.
《Journal of Non》2001,279(2-3):97-109
The Raman spectra of binary xNa2S+(1−x)B2S3 glasses and polycrystals have been measured for the first time and are used to develop a structural model of the sodium thioborate glasses. The Raman spectra confirm our previous infrared (IR) experimental conclusions that the structure of vitreous (ν-B2S3) is comprised of B3(0) groups and six-membered rings. It was also found that as sodium sulfide is added to the glass in the low alkali (x<0.35) glass forming region, the B4 groups are formed at the expense of the B3(0) groups first and then from the six-membered ring groups. The Raman spectra are also consistent with the presence of a pyramidal structural arrangement of B4 groups with trigonally coordinated sulfur atoms. This structure could explain the existence of the super-stoichiometric amounts of B4 groups found using nuclear magnetic resonance (NMR). Glasses in the high alkali region (0.50<x<0.80) progressively change from being comprised of metathioborate rings to being comprised of B3(3) groups. The Raman spectra also confirms the IR spectra which saw no evidence of B3(2) groups in these sodium thioborate glasses.  相似文献   

3.
The structure of lithium borate and strontium borate glasses with high Li2O and SrO contents was examined using the experimental results of ESR and the optical absorption of Cu2+ ions, and the Mössbauer spectra of Fe3+ ions and Raman spectra of these glasses. The results indicate the existence of non-bridging oxygens belonging to orthoborate and pyroborate groups, structural groups of diborate and high pressure forms of metaborate above 30 mol% of the modifier contents in these glasses. Among these four structural groups, the diborate group rapidly decreased with an increase of the modifier contents, while the other three groups increased with an increase of the modifier contents.  相似文献   

4.
Polarized and depolarized Raman spectra of sodium and potassium metagermanosilicate glasses are given. It is concluded from the Raman spectra that the structure of these glasses consists of metagermanosilicate chains in which both SiO4 and GeO4 tetrahedra are present, probably mixed in a random way.  相似文献   

5.
Optical absorption spectra of Cu2+ d–d transition peak in sodium borosilicate glasses and their melts were measured from room temperature to 1100 K. In the case of borate glass free from silicon, increase of the temperature above Tg shifts the peak position to the low energy side and decreases the peak height. Peak width is gradually increased with the increase in temperature. On the other hand, in the case of silicate glass free from boron, peak width is decreased with the increase in temperature from room temperature to liquidus temperature. In addition, peak height is slightly decreased with the temperature increase in this temperature range. Further increase of the temperature makes the peak width large. In borosilicate glasses, temperature dependence of the optical absorption spectra is different both from borate and from silicate, and the temperature dependences of the peak position and of the peak height are very small. Temperature dependence of the peak width depends on the boron/silicon ratio.  相似文献   

6.
Short-range and intermediate range structures of the sodium borate glass system were investigated using Raman spectroscopy to quantify their dependence on Na2O concentration. High-resolution spectra were collected by Raman spectroscopy using the Q-switched, second-harmonic pulse of a Nd:YAG laser as an excitation source. The system was designed for measurement of the spectra of glasses and melts up to temperatures over 1000 °C with high signal to noise ratio. Use of polarized light and the simultaneous analysis of HH and VH spectra allowed deconvolution of Raman spectra into appropriate bands with high reproducibility. The deconvoluted bands in the high-frequency region of 1100-1600 cm−1 could be assigned to the vibration modes due to the short-range structures of BO3 and BO2O units in the glasses. The band intensity ratios showed a simple linear relationship with the molar ratio, symmetric BO3 triangle unit, N3s, to asymmetric BO2O triangle unit, N3a, obtained from 11B-NMR results. These results allowed a quantitative measure for normalizing the spectra leading to a direct comparison of the band intensities. The ring-structures of intermediate range order, boroxol, pentaborate, tetraborate and diborate groups, could be quantified from the spectra in the middle-frequency region. Their trends with Na2O concentration showed a good consistency with 10B-NMR results and also Krogh-Moe’s model.  相似文献   

7.
Raman spectroscopy has been used to measure the fraction of tetrahedral silicate units connected at three corners into the network (Q3) in binary lithium silicate glasses and also in the more complex borosilicate glasses used for waste immobilization. Agreement within experimental error was obtained with 29Si MAS NMR measurements of the same samples. Raman provides an alternative method of structural determination for silicon-containing glasses with a high content of paramagnetic species where NMR loses resolution. Analysis was performed on borosilicate glasses containing up to 11.98 mol% Fe2O3 and the Q3 values obtained by Raman spectroscopy agree within error with the published 29Si NMR results from borosilicate glasses containing the equivalent quantity of Al2O3.  相似文献   

8.
Local structure of the SnO-B2O3 glasses was investigated using several spectroscopic techniques. 11B MAS-NMR spectra suggested that BO4 tetrahedral units maximized at around the composition with 50 mol% SnO. The BO4 units were still present at compositions with high SnO content (67 mol% SnO), suggesting that SnO acted not only as a network modifier but also as a network former. O1s photoelectron spectra revealed that the addition of small amounts of SnO formed non-bridging oxygens (NBO) (B-O?Sn) and the amounts of NBO increased with an increase in SnO content. 119Sn Mössbauer spectra indicated that Sn was present only as Sn(II) in the glasses. The structure of the SnO-B2O3 glasses was compared with that of conventional alkali borate glasses and lead borate glasses. The thermal and viscous properties of these glasses were discussed on the basis of the glass structure revealed in the present study.  相似文献   

9.
《Journal of Non》2007,353(24-25):2403-2407
Absorption and fluorescence spectra of Bi ions in multi-component oxide glasses melted in air were measured. Absorption bands in the range of 400–1000 nm and fluorescence bands at round 1210 nm were only detected in the silicate, borosilicate, borate, and germanate glasses with or without a small amount of alkali or alkaline-earth oxides. The relative IR fluorescence intensity increased with decreasing basicity of matrix glasses and with adding the Al2O3. The compositional dependence of the relative IR fluorescence intensity and the IR fluorescence mechanism are discussed in terms of redox reaction and energy diagram of bismuth-related species in oxide glasses.  相似文献   

10.
Raman and luminescence spectroscopy were used to determine the structure of alkali borate tungstate glasses: M2O(B2O3)2·xWO3, M = Li or Na (0 < x < 1). Raman scattering results showed the dominant tungstate species in these photochromic glasses to be tetrahedral WO4=. At high concentrations of WO3, WO3·H2O, and W2O7= are also present. Luminescence measurements provided evidence for an octahedral WO3 structure not identified by the Raman results. The results also revealed a possible change in the structure of the glasses similar to that observed in alkali borate glasses and associated with the “borate anomaly”. In addition, preliminary measurements are reported on the variation of the band gap, density, index of refraction, and the elastic coefficient C11 determined by Brillouin scattering with composition.  相似文献   

11.
O. Kostadinova  S.N. Yannopoulos   《Journal of Non》2009,355(37-42):2040-2044
The structure of SbxSe100−x bulk glasses is investigated with the aid of Raman scattering over a wide composition range. The Raman spectra of the glasses exhibit unusual features when compared with other structurally similar binary glasses, owing to the phase separation of the present glasses in a certain composition range. The evolution of the Raman spectra and the depolarization ratio of the polarized and depolarized Raman intensities are consistent with the phase separation effect. The present findings are discussed alongside with calorimetric data from the literature that have been used up to now to extract structural information in an indirect way. The capability of Raman scattering as a tool for investigating phase separation in homogeneous media is demonstrated.  相似文献   

12.
The presence of sulfur in radioactive waste to be incorporated in borosilicate glasses entails difficulties mainly due to the relatively low solubility of sulfates in the vitreous phase. In this work a study is presented on the effects of the ratio R = [Na2O]/[B2O3], the type of sulfate added and the addition of V2O5 on the incorporation of sulfates in borosilicate glasses. Glass samples were prepared at the laboratory scale (up to 50-100 g) by melting oxide and sulfate powders under air in Pt/Au crucibles. XRF and ICP/AES chemical analysis, SEM/EDS, microprobe WDS and Raman spectroscopy were employed to characterize the fabricated samples. The main experimental results confirm that the incorporation of sulfates in borosilicate glasses is favored by the network depolymerization, which evolves with the ratio R. The addition of V2O5 seems to accelerate the kinetics of sulfur incorporation in the glass and, probably, increase the sulfate solubility by modifying the borate network and fostering the formation of voids of shape and size compatible with the sulfur coordination polyhedron in the glassy network. The kinetics of X2SO4 incorporation in the glass seems to be slower when X = Cs.  相似文献   

13.
It is shown that the B10 spectra for sodium borate glasses are sensitive to the different structural groups in the glasses. Five boron sites are inferred from the data: two 4-coordinated sites and three 3-coordinated sites. The two 4-coordinated boron sites are identified as BO4 units connected to all BO3 units, and BO4 units connected to one BO4 unit and three BO3 units. The three 3-coordinated boron sites are identified as BO3 units connected to: (1) all BO3 units; (2) a mixture of BO3 and BO4 units; and (3) all BO4 units. These five sites can be interpreted in terms of Krogh-Moe's structural model of alkali borate glasses, wherein the fraction of each structural group can be determined for eight sodium borate glasses spanning the compositional range from 0 to 35 mol% Na2O. The resulting fractions are consistent with Krogh-Moe's structural model.  相似文献   

14.
Infrared and Raman spectra of oxyfluoroborate glasses of the compositions 20CaF2-20 ZnO-(60-x) B2O3-x Cr2O3 with 0 ≤ × ≤ 0.10 mol% (x = 0, 0.02, 0.04, 0.05, 0.06, 0.07, 0.08 and 0.1) have been analyzed in order to explain the role of Cr2O3 on the structure of these glasses. Density, molar volume, oxygen molar volume and oxygen packing density are determined to explain the packing of the atoms in the glasses. From these studies, the existence of different borate groups like di-, tri-, tetra-, penta-, ortho-, pyro- and metaborates in these glasses is established. With the increase in the concentration of Cr2O3 up to 0.06 mol%, conversion of BO3 units into BO4 units and above this mole fraction the reconversion of BO4 units into BO3 units is observed. The breaking and reforming of the boroxol ring is explained from the Raman spectral studies of these glasses.  相似文献   

15.
A series of barium chloro-fluorozirconate glasses have been prepared. Their IR absorption, IR reflectivity and Raman spectra have been measured down to 33 cm?1. The glass transition and crystallization temperatures have also been measured. The high frequency IR absorption and Raman modes of the chloro-fluorozirconate glasses have been assigned as in fluorozirconate glasses. The IR reflection spectra of chloride-containing glasses differed from the fluorozirconates in that one band was clearly related to Cl atom motions. The structure of the glasses probably consists of zig-zag chains of ZrCl2F4 mixed halide octahedra plus a pure fluoride matrix whose structure is similar to that of a ZrF4BaF2 glass with the same composition.  相似文献   

16.
《Journal of Non》2005,351(46-48):3640-3643
Germanate and phosphosilicate glasses made in oxygen surplus conditions were studied by Raman and optical reflection methods. We found that the optical reflection spectra of the germanate glasses are quite similar to the one those of a GeO2 crystal with the α-quartz structure. The reflection of phosphosilicate glasses is very close to silica glass-related spectra. Hence, the determining influence of the tetrahedral structure on reflection spectra is revealed. The Raman spectra of germanate samples are similar to those reported the one known in the literature. Octahedral entities, namely bands similar to stishovite vibration modes, were difficult to detect in phosphosilicate glasses through Raman spectroscopy.  相似文献   

17.
Polarized Raman spectra of x NaAlO2·(100 ? x) GeO2 glasses (x = 0, 5, 10, 15, 20, 25, 33, 42, and 50) are presented. Analyses of the Raman data indicate that the aluminogermanate glasses have three-dimensional network structures consisting of interconnected AlO4 and GeO4 tetrahedra; Na+ ions are present in cavities and charge balance the Al3+ ions. Systematic changes are observed in the frequencies, intensities and polarization characteristics of spectral bands with variations in the NaAlO2 content of these glasses. The antisymmetric stretching mode [νas (TOT), where T = Al, Ge] in the high-frequency region of the spectra (800–1000 cm?1) appears as a doublet consisting of well-defined bands in the spectra of glasses along the entire join. Both components of the high-frequency doublet shift to a lower frequency with increasing NaAlO2 content, indicating that the νas (GeO4) and νas(AlO4) stretching modes are coupled. The variations in the TO force constants and TOT bond angles with change in composition most likely cause the bands to shift. The frequencies of the Raman bands of sodium aluminogermanate glasses are compared with those of the corresponding bands in isostructural sodium gallogermanate glasses. On the basis of this comparison, the origin and delocalization of the vibrational modes producing characteristic Raman bands in the spectra of these glasses are discussed. The changes observed in the Raman spectra of aluminogermanate glasses with variation in NaAlO2 content are analogous to those observed in the spectra of glasses along the NaAlO2SiO2 join.  相似文献   

18.
The optical absorption spectra of cobalt (II) in Tl2OB2O3 glasses have been studied and compared with those in binary alkali borate glasses. In thallium borate glasses cobalt (II) may be present in octahedral and/or in tetrahedral symmetry depending upon the composition of the glass. In low thallium borate glasses cobalt (II) is octahedral while the concentration of tetrahedral cobalt (II) increases with increasing Tl2O content of the glass; the formation of tetrahedral cobalt (II) becomes noticeable when the concentration of Tl2O reaches above the critical concentration of about 19 mol %. The ligand field parameters: 10Dq and B have been calculated from the absorption spectra of cobalt (II) in different glasses and it has been found that the Racah parameter, B, is more in Tl2OB2O3 glasses than those in Na2OB2O3 or K2OB2O3 glasses of corresponding molar composition. This indicates that the donor capacity of the BO4 group in thallium borate glasses is lower than that in alkali borate glasses; this is consistent with the NMR results in Tl2OB2O3 glasses containing less than 20 mol % Tl2O where three BO4 groups have been found to form with each Tl2O unit added.  相似文献   

19.
Polarized and depolarized Raman spectra of alkali germanate glasses are given, together with Raman powder spectra of the crystalline compounds Li2O · 2 GeO2; 3 Li2O · 8 GeO2; 2 Li2O· 9 GeO2; Li2O · 7 GeO2; 2 Na2O · 9 GeO2; K2O · 2 GeO2; K2O · 4 GeO2 and K2O · 8 GeO2.The alkali germanate glasses: xA2O (1?x) GeO2 are studied in the composition range 0 < x < 0.333. The vibrational modes observed in the high energy range of the Raman spectra of the crystalline compounds are interpreted in terms of symmetrical and antisymmetrical O-Ge-O and Ge-O? stretch vibrations. The molecular structure of the germanate glasses is deduced from a comparison of the Raman spectra of the glasses with those of the crystalline compounds, together with a study of the polarization properties of the glass spectra.It is observed that 6-coordinated Ge atoms occur in a network structure which resembles the structures occurring in the crystalline compounds 2 Li2O · 9 GeO2 and 2 Na2O · 9 GeO2.In the region of 0.18 < x < 0.33 it is found that tetrahedra with one non-bridging oxygen atom are formed. These tetrahedra are probably present in a network as occurs in the crystalline digermanates Li2O · 2 GeO2 and K2O · 2 GeO2.  相似文献   

20.
In several series of lithium, sodium, and potassium borosilicate glasses whose compositions traverse known regions of liquid-liquid phase separation, we have applied triple-quantum magic-angle spinning (3QMAS) 11B and 17O NMR to obtain high-resolution information about short-range structure and connections among various network structural units, and their variation with composition and thermal history. Oxygen-17 3QMAS spectra reveal changes in connectivities between silicate and BO3 ([3]B) and BO4 ([4]B) units, by quantifying populations of bridging oxygens such as B-O-B, Si-O-B and Si-O-Si, and of non-bridging oxygens. [3]B-O-Si and [4]B-O-Si as well as [3]B-O-[3]B and [4]B-O-[3]B linkages can be distinguished. 11B MAS and 3QMAS at a magnetic field of 14.1 T allow proportions of several borate units to be determined, including [3]B in boroxol ring and non-ring sites and [4]B with 3 versus 4 Si neighbors. By combining the 11B and 17O NMR results, detailed information on Si/B mixing in sodium borosilicates can be derived, showing, for example, that [4]B and non-ring [3]B tend to mix with silicate units, while ring [3]B is mainly connected to borate groups. In a preliminary study of the effects of varying alkali cation, potassium-containing glasses are similar to those in the sodium borosilicate system, but a lithium borosilicate seems to exhibit considerably greater chemical heterogeneity. In annealing experiments that converted an optically clear to obviously phase-separated glasses, the ratio of [3]B to [4]B does not change significantly, but part of the non-ring [3]B converts to ring [3]B as the degree of unmixing increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号