首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 626 毫秒
1.
4-wave mixing has been demonstrated in room temperature germanium using a TEA CO2 laser (9.3 μm) and an optically pumped NH3 laser (12.8 μm) as radiation sources. Non-collinear phase matched emission near 7 μm has been observed with a mixing efficiency close to the calculated value. The extension of this mixing process to generate wavelengths in the important region near 16 μm is discussed.  相似文献   

2.
Analysis is given for a possibility of singly resonant parametric oscillation in the submillimeter range at synchronous pumping of the ZnGeP2 crystal by a train of 100-ps second-harmonic pulses from the CO2 laser with the radiation energy 1.0 J. The calculation shows that using the ZnGeP2 crystal and the second harmonic of the CO2 laser with the energy density 1.8 J cm−2, one can get the peak submillimeter radiation power from 3.6 to 12 MW in the range from 95 to 300 μm (1.0–3.3 THz). The expected peak power values are larger than the experimental ones obtained by other nonlinear optics methods.  相似文献   

3.
Super-radiant output from D2O pumped by up to 10 J pulses of the CO2 P(32), R(12) and R(22) laser transitions gave measured energies of 330 mJ, 240 mJ and 120 mJ respectively. In the R(12) case the emission was at 361 μm and 385 μm in the intensity ratio of 1:2, the average power was 1–2 MW and peak powers of about 5 MW were measured.  相似文献   

4.
A high power 4.65 ??m single-wavelength laser by second-harmonic generation (SHG) of TEA CO2 laser pulses in silver gallium selenide (AgGaSe2) and zinc germanium phosphide (ZnGeP2) crystals is reported. Experimental results show that the average output power of SHG laser is not only restricted by the damage threshold of the nonlinear crystals, but also limited by the irradiated power of fundamental-wave laser depending on the operating repetition-rate. It is found that ZnGeP2 can withstand higher 9.3 ??m laser irradiation intensity than AgGaSe2. As a result, using a parallel array stacked by seven ZnGeP2 crystals, an average power of 20.3 W 4.65 ??m laser is obtained at 250 Hz. To the best of our knowledge, it is the highest output power for SHG of CO2 laser by far.  相似文献   

5.
A 10 μm detection system with a temporal resolution of ? 40 psec has been used to investigate the output of a multi-atmosphere CO2 laser. Mode-locking, by means of p-type germanium, has permitted the observation of pulses as short as ? 75 psec.  相似文献   

6.
In microwave conductivity investigations of photoexcited germanium at low temperatures under CO2 laser pulse irradiation the evaporation of EHL and e-h plasma formation have been observed. This plasma irreversibly vanishes at high CO2 laser intensities ICO2 >4 × 105 W cm?2 but recondenses at low intensities. It was found that complete and irreversible disappearance of EHL is due to the e-h plasma throw out to the crystal boundaries by phonon wind, generated in 10.6 μm radiation absorption whereas at ICO2 > 106 W cm?2 it is connected with the crystal lattice heating over the condensation critical temperature. A theoretical analysis of the CO2 laser produced phonon wind interaction with e-h plasma is briefly presented. By comparing with experimental data on recondensation process the phonon wind efficiency is estimated.  相似文献   

7.
Temperature sensing using 1.54 μm fluorescence at the transition between the energy levels4I15/2 (ground state) and4I13/2 generated in an erbium-doped fiber with 1.48 μm pumping is proposed. The fluorescence has a peculiar spectral profile that possesses two peaks around 1.530 μm and 1.552 μm wavelengths. The temperature-dependent fluorescence is investigated in the temperature range between -50°C and 90°C. The power ratio between the two peaks increases with an increase in temperature. The sensitivity of the ratio is 0.007/°C on average in the measured temperature range. The total fluorescence power and the absorption loss at λ = 1480 nm in the fiber decrease as the temperature increases. Optical fiber temperature sensing immune from the fluctuation in pumping power can be performed using the peak power ratio and/or the absorption loss.  相似文献   

8.
Order-of-magnitude increase in output power and efficiency has been obtained from the new CW 12.08 μm NH3 Raman laser optically pumped by low-pressure CO2 laser. The 12.08 μm output power is analyzed as a function of the main operational parameters.  相似文献   

9.
In this article, the construction of P-type germanium (Ge) photon drag detector which is used to characterize the gain and output powers of a 10 W CO2 laser and a CO2 laser amplifier is described. Gain and laser amplifier output power versus laser input power measurements collected at 4.7 mbar and 12.0 mbar amplifier tube pressures are discussed. Moreover, measurements relating the CO2 laser output power to the laser tube discharge current are provided at 6.9 mbar and 7.3 mbar tube pressures.  相似文献   

10.
In this paper, infrared (IR) and far-infrared (FIR) laser emissions from a TE CO2 laser pumped NH3 gas are reported. 8 IR laser emissions near the wavelength of 12 μm were observed by using 4 different CO2 laser lines for the pumping. 3 IR laser emissions in P-branch of vibrational-rotational band (ν2 → G) oscillated simultaneously in two pumping cases, i.e. pumping with the R(30) or R(16) line of 9.4 μm band from the CO2 laser. 26 FIR laser emissions (26.45 μm ~ 281.0 μm) were observed by using 12 different CO2 laser lines, and the 10 FIR emissions of them may be new laser emissions as far as we know.  相似文献   

11.
《Infrared physics》1988,28(6):405-412
The experimental study of short mirrorless 496 μm CH3F and 385 μm D2O lasers demonstrates the strong influence of transverse feedback on the emitted pulses in forward direction. The increase of transverse feedback leads to a new simple and passive method for pulse shortening, tail suppression and improvement of pulse structure without significant loss of sub-millimeter sub-mm peak power. Using a 0.4 J CO2 pump laser, monochromatic, linear polarized kW pulses with some 10 ns pulse length are observed. The reliability of tail elimination is tested with a highly sensitive superconducting bolometer detector. The new quenching method allows the generation of short, smooth single-pulses and offers other possibilities for the development and application of mirrorless sub-mm lasers.  相似文献   

12.
Phase-conjugate reflection at theP(12) CO2 line (λ=10.51 μm) has been obtained in gaseous SF6 with a power reflection, coefficient of 220% and an energy reflection coefficient of 115%.  相似文献   

13.
Some results of experimental and numerical studies on the transmission of a nonchain high-frequency (HF) laser beam through germanium (Ge) single crystals of differing thickness and specific resistance are presented. Based on the experimental data for the HF(DF) lasing spectrum, the coefficient of two-photon absorption in germanium has been estimated as K2 = 55 ± 10 cm/GW at λ = 2.8 μm. The results are in good agreement with theory. The developed experimental data-processing software has enabled the numerical study of the transmission of a high-power beam with λ = 2.6–3 μm through Ge at any laser-pulse-impact moment. It has been shown that thin germanium coatings can efficiently smoothen the distribution of energy over the beam aperture for high-power laser radiation with λ = 2.6–4 μm.  相似文献   

14.
Y. J. Ding  W. Shi 《Laser Physics》2006,16(4):562-570
We review our up-to-date result on the development of widely tunable monochromatic THz sources, implemented based on difference-frequency generation (DFG) in GaSe, ZnGeP2, and GaP. Using a GaSe crystal, the output wavelength was tuned in the range from 66.5 μm to 5664 μm (from 150 cm?1 to 1.77 cm?1) with the highest peak power 389 W. This tuning range is the widest ever produced for a continuously tunable and coherent tabletop THz source. Moreover, the conversion efficiency 0.1% is also the highest ever achieved for a tabletop system. On the other hand, based on DFG in a ZnGeP2 crystal, the output wavelength was tuned in the ranges 83.1–1642 μm and 80.2–1416 μm for two phase-matching configurations. The output power has reached 134 W so far. Finally, using a GaP crystal, the output wavelength was tuned in the range 71.1–2830 μm, whereas the highest peak power was 15.6 W. The advantage of using GaP over GaSe and ZnGeP2 is that crystal rotation is no longer required for wavelength tuning. Instead, one just needs to tune the wavelength of one mixing beam within the bandwidth of as narrow as 15.3 nm.  相似文献   

15.
This paper presents the results of studies aimed at the creation of a hybrid laser system which is composed of a gas lasers and a nonlinear crystal and appreciably broadens and enriches the radiation spectrum of these lasers. A highly efficient conversion (37%) is attained when generating the second harmonic in a ZnGeP2 crystal owing to an increase in the peak power of CO laser radiation in the mode locking regime. The two-cascade conversion (generation of both sum and difference frequencies) of radiation of a broadband CO laser in the single sample of such nonlinear crystals as ZnGeP2 and AgGaSe2 is demonstrated. In this case, the radiation spectrum is broadened by nearly a factor of two, and the number of detected spectral lines grows by a factor of four. The use of a comparatively simple laser system of gas-discharge CO and CO2 lasers to conversion in AgGaSe2 results in laser radiation tunable over a set of narrow spectral lines within a range from 2.5 to 16.6 μm (more than two and a half octaves).  相似文献   

16.
高功率TEA CO2激光器两波长激光切换输出技术   总被引:1,自引:0,他引:1       下载免费PDF全文
 以TEA CO2激光器通常采用的平-凹光学稳定腔为基础,提出了一种新的波长选支方法——输出窗口镀膜选支方法。利用一台高平均功率TEA CO2激光器进行了选支实验研究,结合现有光学镀膜技术,得到了中心波长为9.3 μm的激光单谱线输出,其单脉冲能量及平均功率与激光器原中心波长10.6 μm单谱线输出的相应参数基本相当。研究发现,以相同单脉冲能量激光照射热敏纸时,中心波长9.3 μm激光光斑与中心波长10.6 μm的明显不同。同时,还设计出两波长窗口密闭免调切换装置,在一台激光器上实现了10.6,9.3 μm两个中心波长激光同等功率水平的免调切换输出,切换位置误差小于5″,密封性能满足使用要求。  相似文献   

17.
Fabry-Perot frequency measurements of FIR superradiant emission from D2O at 99 μm are reported. Several Fabry-Perot scans at different frequency settings of the CO2 pump laser show a shift in the FIR output spectrum equal, within experimental error, to the shift in input frequency of the CO2 pump. The “superradiant” emission therefore of the D2O 101,10(010) → 90,9(010) transition at 99 μm contains a strong Raman component.  相似文献   

18.
Magnetoabsorption measurements in n-type InSb at T?30K have been made between ~ 8 and 15 μm using magnetic fields up to 150 kOe. The observed absorption peaks are identified as due to combined resonance, harmonics of cyclotron resonance and the corresponding LO phonon-assisted resonances. These resonant absorptions are considered to be important in the interpretation of the observed magnetic field behavior of the threshold and output power of the InSb spin-flip Raman laser pumped with 10.6 μm CO2 laser.  相似文献   

19.
《Infrared physics》1993,34(4):421-439
In this investigation, the performance of a CO2 laser rangefinder at 10.6 μm and an erbium:glass rangefinder at 1.54 μm are evaluated and compared under various atmospheric conditions. Both systems and the trial site are described. The effect of atmospheric extinction and scattering is discussed. Also, the maximum range capability of the two laser rangefinders under these degraded weather conditions is assessed. The results show that the tested CO2 laser rangefinder performed better than the Er:glass LRF used for the trials under all weather conditions. However, comparing two state-of-the-art systems does not lead necessarily to the same conclusion.  相似文献   

20.
The effect of polarization can influence the frequency conversion and enhance the anti-Stokes emission in a rotational para-H2 Raman laser. Stokes (16 μm) and anti-Stokes (7 μm) radiations were obtained from a line tunable CO2 laser at 10 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号