首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The molecular geometry of the complex of aluminium trichloride with ammonia, Cl3Al.NH3, has been studied by electron diffraction. The most important internuclear distances in terms of ra parameters are as follows: r(Al-Cl) = 2.100±0.005 Å, r(Al-N) = 1.996±0.019 Å, r(Cl·Cl) = 3.569±0.011 Å and r(Cl·N) = 3.165±0.012 Å. The Cl-Al-Cl bond angle in terms of an approximate ra structure is 116.9°. The assumptions of a staggered model in the structure analysis was justified by CNDO/2 calculations. The experimental data indicate strong linkage between the donor and acceptor parts. The flat pyramidal average configuration of the AlCl3 part of the complex suggests planar equilibrium structure for free AlCl3. Variations in the bond configurations of the donor and acceptor parts, as compared with those of the respective free molecules, are discussed.  相似文献   

2.
The molecular geometry of the complex of gallium trichloride with ammonia, Cl3Ga.NH3, has been studied by electron diffraction. The most important internuclear distances in terms of ra parameters are as follows: r(Ga-Cl) = 2.142±0.005Å, r(Ga-N) = 2.057±0.011Å, r(Cl?Cl) = 3.642±0.010Åand r(Cl?N) = 3.242±0.012Å. As in the case of the aluminium analogue, the flat pyramidal configuration of the GaCl3 part of the complex suggests a planar equilibrium structure for free GaCl3. The distance between the donor and acceptor parts may indicate a somewhat weaker interaction than is the case in the aluminium analogue.  相似文献   

3.
The present electron diffraction study of dimethyl sulphone eliminates the discrepancy between the values of the parameter ∠O-S-O obtained by microwave spectroscopy and electron diffraction. The following geometrical parameters (ra values) have been obtained: r(C-H) = 1.114±0.003 Å, r(S-O) = 1.435±0.003 Å, r(S-C) = 1.771±0.004 Å, ∠C-S-C = 102.6±0.9°, ∠O-S-O = 119.7±1.1° and ∠S-C-H = 108.5±0.8°. Comparison of sulphone molecular geometries shows a trend toward longer S-O bonds and smaller O-S-O bond angles as ligand electronegativity decreases. The constancy of the O?O interatomic distance indicates the importance of non-bonded interactions.  相似文献   

4.
The molecular structure of isobutane in the gas phase was investigated by combining electron diffraction data with microwave spectroscopic rotational constants of Lide.The analysis indicated that the tertiary C-H distance (rg = 1.122±0.006 Å) was substantially longer than the average methyl C-H distance (rg = 1.113±0.002 Å). Other structural parameters obtained were: rg(C-C) = 1.535±0.001 Å, ∠CCC = 110.8±0.2°, and the average ∠CCH (methyl) = 111.4±0.2°.  相似文献   

5.
The molecular structure of 2,2,6-trimethylcyclohexanone was studied by electron diffraction in the vapor phase combined with auxiliary vibrational and conformational calculations, ra = 1.535 ± 0.004 and ra = 1.108 ± 0.015 were found for the average C-H and C-C bonds, respectively, from data taken at both the Oslo and Arkansas electron diffraction units. Five local conformational energy minima (2 rigid (chair) and 3 flexible (boat) ones) were found for the molecule. Data analysis revealed that, at 70° C, the vapors of the compound contained essentially one conformer in a chair form with two of the three methyl-substituents in equatorial positions. Molecular mechanics results based on different force fields taken from the literature were compared, and found to be in fair agreement.  相似文献   

6.
The molecular geometry of selenium oxychloride has been studied by electron diffraction. The internuclear distances (in terms of ra) are: r(Se-O) 1.612 ± 0.005 Å, r(Se-Cl) 2.204 ± 0.005 Å, r(Cl β O) 3.064 ± 0.012 Å, r(Cl β Cl) 3.295 ± 0.016 Å. The bond angles are ∠Cl-Se-O 105.8 ± 0.7° and ∠ Cl-Se-Cl 96.8 ± 0.7°. The structural parameters of three simple selenium-oxygen compounds are compared with those of their sulphur analogs in terms of the valence shell electron pair repulsion model.  相似文献   

7.
The molecular structure of tungsten oxytetrafluoride has been studied in the gas phase by electron diffraction. A square pyramidal model with molecular symmetryC4v, as indicated by vibrational spectroscopy, gives a good fit to the experimental data. Least squares refinement on the molecular intensity curves gives the following results for the principal geometrical parameters (uncertainties in parentheses are 2σ):ra(W=O) = 1.666 (0.007)Å,ra(W-F)= 1.847 (0.002)Å, ∠OWF = 104.8 (0.6)°, ∠FWF = 86.2(0.3)°.  相似文献   

8.
The gas phase molecular structure of 2,3-dimethyl-2-butene has been investigated by the electron, diffraction technique. The following structural parameters (ra structure) have been obtained: CC = 1.336±0.004 Å; C-C = 1.505±0.002 Å; C-H = 1.092±0.003 Å; ∠CC-C = 123.4±0.4°; ∠C-C-H = 110.5±0.7°; methyl torsional angle CC-C-H = 31±3°. If local C3v symmetry is assumed then a twist of 13 ±4° of the carbon skeleton is observed. This twist reduces to virtually 0° if no local symmetry is imposed on the methyl group. The twisted structure is in good agreement with that obtained by valence force-field calculations.  相似文献   

9.
The electron diffraction study of azetidine yielded the following main geometrical parameters (ra structure): dihedral angle (the angle between the C-C-C and C-N-C planes) φ = 33.1 ± 2.4°, r(C-N) = 1.482 ± 0.006Å, r(C-C) = 1.553 ± 0.009Å, r(C-H) = 1.107 ± 0.003Å, ∠C-N-C = 92.2 ± 0.4°, ∠C-C-C = 86.9 ± 0.4° and ∠C-C-N = 85.8 ± 0.4°.  相似文献   

10.
The molecular structure of tetrafluoro-1,3-diselenetane was determined in the gas phase by electron diffraction. A planar ring configuration with the following geometric parameters (rg-values) was obtained:r(Se-C) = 1.968 ± 0.004 Å, r(C-F) = 1.353 ± 0.003 Å, ∠SeCSe = 98.5° ± 0.4°, ∠FCF = 106.3 ± 0.8°. SCF-MO calculations in the CNDO/2 approximation confirm the planarity of the four membered ring and give a plausible explanation for the remarkably short Se-C bond length in the ring which in spite of ring strain is shorter than in Se(CF3)2. There exists a strong bonding interaction between the diagonal selenium atoms which amounts to about one fourth of a normal single bond strength.  相似文献   

11.
The electron diffraction study of thionyl fluoride yielded the following geometrical parameters (ra structure): S-O 1.420±0.003 Å, S-F 1.583±0.003Å, O-S-F 106.2±0.2° and F-S-F 92.2±0.3°. The average structure (rα°) is also given. Some of the variations in the molecular geometries of SOX2 and SO2X2 molecules (X = F or Cl) involving the valence shell electron pair repulsion theory are discussed.  相似文献   

12.
The molecular structure of bis(acetylacetonato)beryllium has been determined by gas electron diffraction. The experimental data were found to be consistent with the D2d model in which the oxygen atoms are arranged tetrahedrally around the central beryllium atom (∠OBeO = 106.0 ± 1.0°). The structural parameters are as follows: rg(Be-O) = 1.615 ± 0.006 Å, rg (C-O) = 1.270 ± 0.004 Å, rg (C-Cring) = 1.397 ± 0.004 Å, rg (C-Cmeth) = 1.499 ± 0.005 Å. The mean amplitudes of vibration were calculated from the normal-vibration treatment using the modified Urey—Bradley force field  相似文献   

13.
The rg structure of bis(1,1,1,5,5,5-hexafluoroacetylacetonato) copper(II) has been determined by gas phase electron diffraction. The experimental data were found to be consistent with a D2h model in which the oxygens from the two ligands are arranged in an essentially square planar configuration about the copper atom (∠OCuO = 90.6° ± 1.2°). It was possible to obtain a precise value for the copper oxygen bond length, rg = 1.919 ± 0.008 Å, since this distance appeared as an isolated peak in the radial distribution curve. Structural parameters for the ligand (rg(C-O) = 1.276 ± 0.009 Å, rg(C-Cring) = 1.392 ± 0.015 Å, rg(C-CF3)= 1.558 ± 0.009 Å and rg(C-F) = 1.339 ± 0.003 Å), while less precisely determined are, nevertheless, consistent with reported values for related molecules. A model for the rotational isomerism of the four CF3 groups was invoked in order to explain various features in the radial distribution curve in a region from 2.5 to 5.5 Å.  相似文献   

14.
The molecular structure of bis(acetylacetonato)nickel(II) has been determined by a sector-microphotometer gaseous electron-diffraction method. The experimental data were found to be consistent with a monomeric square-planar structure. The structural parameters of the chelate were determined as follows: ∠ ONiO = 93.6 ± 1.1°, rg(Ni-O) = 1.876±0.005A Å, rg(C-0) = 1.273± 0.007 Å, rg(C-Cring) = 1.401 ± 0.010 Å, rg(C-Cmethyl) = 1.504 ± 0.013 Å. The mean amplitudes of vibration and the shrinkage effects were calculated from normal-vibration treatment using the Urey-Bradley force field.  相似文献   

15.
The molecular structure of FBrO3 has been studied by gas-phase electron diffraction. Least-squares refinements of the molecular geometry using fixed spectroscopic amplitudes revealed two geometrical minima. Initially, the amplitudes employed were derived from diagonal force fields obtained by spectroscopic least-squares refinements to fit observed and calculated wave numbers; for each geometry there are two spectroscopic minima. In the lowest geometrical minimum the wave number agreement is poor, however, the introduction of the ∠OBrO/∠FBrO interaction force constant removed the discrepancies; the resulting force field is F(Br-O) = 6.92 ± 0.02 mdyn Å?1F(Br-F) = 3.22 ± 0.03 mdyn Å?1, F(∠OBrO) = 1.06 ± 0.02 mdyn Å, F(∠FBrO) = 0.81 ± 0.03 mdyn Å, F(∠OBrO/∠FBrO) = ?0.19 ± 0.02 mdyn Å. In the corresponding geometrical minimum rg(Br-O) = 1.582 ± 0.001 Å, rg(Br-F) = 1.708 ± 0.003 Å, rα(∠OBrO) = 114.9 ± 0.3°, rα(∠FBrO) = 103.3 ± 0.3°. Perpendicular amplitude correction coefficients, calculated for each force field employed, were used throughout to relate the interatomic distances through the rα-structure. The geometries of the rαo- and re-structures are estimated.  相似文献   

16.
The molecular structure of tetravinylsilane has been studied by gas-phase electron diffraction. The radial distribution curve suggests the absence of conformers having vinyl double bonds staggered with respect to the SiC4 skeleton. Of the eclipsed or approximately-eclipsed conformers, the one with S4 symmetry gives the best fit with experiment, although a small admixture of a C1 conformation cannot be ruled out. Least-squares refinement gave the following values for the independent structural parameters (lengths, ra basis; angles, rα basis): C-H = 1.118 ± 0.003 Å, CC = 1.355 ± 0.002 Å, Si-C = 1.855 ±0.002 Å, ∠SiCC = 124.0 ± 0.3°, ∠SiCH = 118.4 ± 1.0°, torsion angles CSiCC are 17.5 ± 0.6° from the eclipsed conformation. During the refinement the vibrational amplitudes u and perpendicular amplitude corrections K were held constant at calculated values. The CC bond length provides evidence of interaction between the vinyl π-bonds and the vacant d-orbitals of silicon.  相似文献   

17.
Chloroacetyl chloride is studied by gas-phase electron diffraction at nozzle-tip tempera- tures of 18, 110 and 215°C. The molecules exist as a mixture of anti and gauche confor- mers with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ is found to be 0.770 (0.070), 0.673 (0.086) and 0.572 (0.086) at 18, 110 and 215°C, respectively. These values correspond to an energy difference with estimated standard deviation ΔEo = Eog -Eoa = 1.3 ± 0.4 kcal mol?1 and an entropy difference ΔSo = Sog -Soa = 0.7 ± 1.1 cal mol?1 K?1. Certain of the diffraction results permit the evaluation of an approximate torsional potential function of the form 2V = V1(1 - cos φ) + V2(1 - cos 2φ) + V3(1 - cos 3φ); the results are V1 = 1.19 ± 0.33, V2 = 0.56 ± 0.20 and V3 = 0.94 ± 0.12, all in kcal mol?1. The results for the distance (ra), angle (∠α) and r.m.s. amplitude parameters obtained at the three temperatures are entirely consistent. At 18°C the more important parameters are, with estimated uncertainties of 2σ, r(C-H) = 1.062(0.030) Å, r(CO) = 1.182(0.004) Å, r(C-C) = 1.521(0.009) Å. r(CO-Cl) = 1.772(0.016) Å, r(CH2-Cl) = 1.782(0.018) Å, ∠C-C-0 = 126.9(0.9)°, ∠CH2-CO-C1 = 110.0(0.7)°,∠CO-CH2-C1 = 112.9(1–7)°, ∠H-C-H = 109.5° (assumed), ∠φ (gauche torsion angle relative to 0° for the anti form) = 116.4(7.7)°, δ (r.m.s. amplitude of torsional vibration in the anti conformer) == 17.5(4.2)°.  相似文献   

18.
A combined electron diffraction and mass spectrometric study was carried out to investigate the molecular structure of 4-methylbenzene sulfochloride at 330(2) K. An analysis of the electron diffraction data was performed in terms of the rα structure. Several models of geometrical structure having different orientations of the sulfochloride group relative to the plane of the benzene ring are treated. The following values of structural parameters were obtained: rα(C-H)meth= 1.104(41)Å, ra(C-H)/phen = 1.103(27)Å, ra(C-C)phen = 1.403(7) Å, ra(C-C)meth = 1.512(25) Å, ra(C-S) =1.758(6) Å, ra(S = O) = 1.419(3) Å,r a(S-Cl) = 2.049(5) Å, ∠CCHmeth = 106.9(47)?, ∠CSO = 110.5(6)?, ∠CSCl = 101.3(6)°, ∠OSO = 120.5(9)°. The angle between the plane of the benzene ring and the plane of the S-Cl bond was found to be 83°. Ab initio and semiempirical quantum chemical calculations were accomplished to estimate the geometrical and energy parameters and compare them with electron diffraction data.  相似文献   

19.
1,1-bis(methylthio)ethylene has been studied in the gaseous phase by electron diffraction and in the solid and liquid phases by Raman spectroscopy. While there is apparently only one conformer in the solid, the fluid phases consist of probably three forms, two of these have a non-planar skeleton. Average values for the bond lengths are: ra(Ceth—S) = 1.767 Å, ra(Cmet—S) = 1.815 Å, ra(CC) = 1.348 Å.  相似文献   

20.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号