首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heat capacities have been measured for single crystals of V2O3, either pure or doped with 1 and 1.4 mole% Cr2O3 and Al2O3 over the temperature range 100–700°K. V2O3 undergoes a fairly sharp transition at low temperatures (~170°K) but fails to exhibit any thermal anomaly above 300°K. The thermal behavior of (MxV1?x)2O3, M = Cr, Al, is manifested by two transitions: one at low temperatures, 170–180°K for x = 0.01 and 180–190°K for x = 0.014, and the other at high temperatures. For x = 0.01, the high-temperature (HT) anomaly extended over the range 325–345°K (Cr-doped V2O3) and 345–365°K (Al-doped V2O3), respectively. The corresponding ranges for x = 0.014 were found to be 260–280°K and 270–290°K, respectively. Further, the HT anomaly was characterized by a large hysteresis (~50°K). The values of lattice heat capacity of pure and doped V2O3 were, however, found to be almost the same and could be empirically represented by the Debye (D)?Einstein (E) function D(580T) + 4E(θT) with θ values 430°K (T = 100–230°K) and 465°K (T > 230°K), respectively. Further, the enthalpy change ΔH associated with the HT anomaly in doped V2O3 (80 ≤ ΔH ≤ 510 J/mole) was 5–10 times smaller than the ΔH corresponding to the lower-temperature transition. The results cited here appear incompatible with the Mott transition model that has been invoked to explain the HT anomaly.  相似文献   

2.
Palladium catalysts are supported on TiO2, ZrO2, Al2O3, Zr0.5Al0.5O1.75 and TiO2-Zr0.5Al0.5O1.75 prepared by co-precipitation method, respectively. Catalytic activities for methane and CO oxidation are evaluated in a gas mixture that simulated the exhaust from lean-burn natural gas vehicles (NGVs). Pd/TiO2-Zr0.5Al0.5O1.75 performs the best catalytic activity among the tested five catalysts. For CH4, the light-off temperature (T50) is 254 °C, and the complete conversion temperature (T90) is 280 °C; for CO, T50 is 84 °C, and T90 was 96 °C. Various techniques, including N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) are employed to characterize the effect of supports on the physicochemical properties of prepared catalysts. N2 adsorption-desorption and SEM show that TiO2-Zr0.5Al0.5O1.75 expresses uniform nano-particles and large meso-pore diameters of 26 nm. H2-TPR and XRD indicate that PdO is well dispersed on the supports and strongly interacted with each other. The results of XPS show that the electron density around PdO and the proportion of active oxygen on TiO2-Zr0.5Al0.5O1.75 are maxima among the five supports.  相似文献   

3.
The crystal structure and superconductive characteristics of the niobium-aluminum oxynitrides were investigated. Single-phase products were successfully obtained starting from a cation ratio of Nb0.89Al0.11. The as-nitrided product crystallized in a cation-deficient rock-salt type structure with a chemical formula of (Nb0.60Al0.080.32)(O0.21N0.79), while annealing at 1773 K under a nitrogen pressure of 0.5 MPa led to a highly crystallized product with a simple rock-salt type structure represented as (Nb0.89Al0.11)(O0.17N0.85). Upon post-annealing, both the critical temperature (Tc) and the superconductive volume fraction (VSC) of the oxynitride were significantly enhanced from Tc≈7 K and VSC=23% for the as-nitrided product to Tc=17.3 K and VSC=91% for the post-annealed product.  相似文献   

4.
We investigated the influence of B substitution for Al2W3O12 on thermal changes of UV–Vis and Raman spectra, and colors. First, B-substituted Al2W3O12 powder was synthesized by a solid-state reaction method. Single-phase Al2?xBxW3O12 powders with x = 0, 0.10 and 0.20 were successively prepared. B substitution promoted thermal changes of the UV–Vis spectra, resulting in a more pronounced color change of Al2W3O12 in the range of 30–150 °C. Raman spectra of the Al2?xBxW3O12 powders with x = 0 and 0.20 indicated that the lattice vibrations of Al2?xBxW3O12 with x = 0.20 were larger than those of Al2W3O12. The thermal change of the color phase (ΔE) in the range 30–150 °C of Al2W3O12 was increased by B substitution. The color of the B-substituted Al2W3O12 powders changed reversibly from pale white at 30 °C to light yellowish green at 150 °C.  相似文献   

5.
The preparation, single crystal growth, and crystallographic properties of a close-packed, eight-layer, hexagonal (a = 5.803 Å, c = 19.076 Å) modification having the stoichiometry Ba8Nb6Li2O24 and of a close-packed, ten-layer, hexagonal (a = 5.760 Å, c = 23.742 Å) phase with Ba10W6Li4O30 stoichiometry are discussed. The isostructural Ba8Ta6Li4O24 form of the eight-layer phase was also prepared (a = 5.802 Å, c = 19.085 Å). Proposed crystal structures involve the pairing of lithium and metal (Nb, Ta, or W) octahedra to yield face-sharing units. The relationship of this phenomenon to other known close-packed phases containing Li is demonstrated. An investigation of the Ba8Nb6Li2O24Ba10W6Li4O30 system is reported.A tetragonal bronze phase homogeneity region was delimited at 1200°C in the BaONb2O5Li2O system. A new orthorhombic phase (a = 10.197 Å, b = 14.882 Å, c = 7.942 Å) was prepared with the stoichiometry Ba4Li2Nb10O30.  相似文献   

6.
We present here the results of X-ray diffraction (XRD), dielectric and calorimetric studies on lead magnesium tungustate, Pb(Mg0.5W0.5)O3 (PMW) ceramic. It is shown that the low temperature antiferroelectric phase of PMW having orthorhombic structure (space group Pmcn) transforms to paraelectric cubic (space group Fm3m) phase at 281 K. The phase transition is of first order character as confirmed by coexistence of Pmcn and Fm3m phases over wide temperature range ∼50 K. The first order character of phase transition is also revealed by the observation of thermal hysteresis in the real part of dielectric permittivity and calorimetric studies. We do not find any evidence for the additional intermediate phase between antiferroelectric (Pmcn) and paraelectric (Fm3m) phases as reported in the literature. Anomalies in the heat flow and dielectric measurements support the finding of our XRD results and reveals that the phase transition temperature (Tc) is 281 K instead of 312 K reported in the literature.  相似文献   

7.
The novel orange-red light emitting La7Ta3W4O30:xSm3+ (x = 0.005–0.20) phosphors were synthesized via the solid-state reaction method. The crystal structure, photoluminescence (PL) properties, optimum concentration, color purity, decay life, and thermal stability of the samples were systematically studied. Under the excitation of 404 nm, La7Ta3W4O30:Sm3+ emits intense orange-red light at 597 nm. The PL spectra of La7Ta3W4O30:Sm3+ phosphors are ascribed to the 4G5/2 to 6HJ (J = 5/2, 7/2, 9/2, and 11/2) transitions of Sm3+ ions. The concentration quenching occurs at the doping level of 1 mol%. The quenching temperature is higher than 500 K. Finally, a white LED (w-LED) with the Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of (0.312, 0.296) and good color rendering index (Ra) of 86 was fabricated. As a consequence, all the results suggest that the orange-red phosphors La7Ta3W4O30:Sm3+ have potential applications in w-LEDs structures.  相似文献   

8.
Chemical Transport Reactions of Compounds LnTa7O19 (Ln = La? Nd) and Structure Refinement of NdTa7O19 Crystals of compounds LnTa7O19 (Ln ? Na? Nd) could be obtained by chemical transport reactions (T2 → T1; T2 = 1100°C, T1 = 1000°C) using chlorine (p(Cl2; 298 K) = 1 atm) as transport agent. An increase of transport rate and an improvement of crystal growth was observed if small amounts of vanadium metal were added. Solid state reactions with mixtures of Ln2O3/Ta2O5 (1:7) in air (T ≈ 1400–1500°C), however, were not succesful because the resulting samples contained LnTa7O19 with other ternary phases as by-products. NdTa7O19 crystallizes in the well-known LaTa7O19-type structure with cell dimensions of a = 6.2229(3) Å, c = 19.939(2) Å and Z = 2. The crystal structure was refined in space groups P6 c2 (R = 3.35%, RW = 2.67%) and P63/mcm (R = 4.75%, RW = 3.88%). Taking aspects of structural chemistry, x-ray results and MAPLE calculations into account, however, the spacegroup P6 c2 should be preferred.  相似文献   

9.
In view of the susceptibility of TiB2 to oxidation, the thermal stability of monolithic TiB2 and of Al2O3-30 vol% TiB2 and Si3N4-20 vol% TiB2 composites was investigated. The temperature at which TiB2 ceramic starts to oxidize is about 400°C, oxidation kinetics being controlled by diffusion up toT≈900°C and in the first stage of the oxidation at 1000°C and 1100°C (up to 800 min and 500 min respectively), and by a linear law at higher temperatures and for longer periods. Weight gains in the Al2O3-TiB2 composite can be detected only at temperatures above ≈700°C and the rate governing step of the oxidation reaction is characterized by a one-dimensional diffusion mechanism atT=700°C andT=800°C and by two-dimensional diffusion at higher temperatures. Concerning the Si3N4-TiB2 composite, three different oxidation behaviours related to the temperature were observed, i.e. up to ≈1000°C the reaction detected regards only the second phase; at ≈1000<T<≈1200°C, the diffusion of O2 or N2 through an oxide layer is proposed as the rate-governing step; atT〉=1200°C, a linear kinetic indicates the formation of a non protective scale.  相似文献   

10.
Ta2O5 is reduced to Ta(IV)O2 with the rutile structure by shock-loading to 50–60 GPa. Tetragonal unit cell parameters at room conditions are measured to be a = 4.7518(5)Å, c = 3.0878(4) Å, ca = 0.6498(1), and V = 69.72(1) Å3. The chemical composition is thermogravimetrically determined to be Ta0.97±0.04O2 by heating shock-reduced products in an oxygen gas flow to 1200°C. In the oxidation process a cation-deficient rutile-type compound Ta0.8O2 is found to be metastably formed.  相似文献   

11.
Results of neutron powder diffraction and magnetic measurements on single crystals of CsMnI3 are reported. Three-dimensional ordering takes place at Tc = 11.1(3) K. Above Tc very broad peaks occur in the neutron powder diffraction diagram, indicating one-dimensional correlations along the chain. Below Tc the Mn2+ ions are coupled antiferromagnetically along the chain. Interchain exchange leads to a 120° structure, slightly distorted due to anisotropy. One-third of the chains have their magnetic moment parallel to the c axis and the rest of the chains have magnetic moments making an angle of 50(2)° with the c axis. The magnetic moment as found from neutron diffraction extrapolated to 0 K is 3.7(1)μB, indicating a considerable zero-point spin reduction. The intrachain exchange Jk was found to be ?9.1(1)K, whereas the ratio of the inter- to intrachain interaction was determined as J′J = × 10?3. A spin flop occurs at H = 54 kOe on application of a magnetic field parallel to the c axis. When a field perpendicular to the c axis is applied a spin reorientation occurs at 1 kOe.  相似文献   

12.
Heat capacity $ C_{\text{p}}^{^\circ } $ (T) of crystalline magnesium zirconium phosphate was measured between 6 and 815 K. The experimental data obtained were used to calculate the standard thermodynamic functions $ C_{\text{p}}^{^\circ } $ (T), H°(T) ? H°(0), S°(T), G°(T) ? H°(0) over the temperature ranging from T  0 to 810 K and standard entropy of formation at 298.15 K. The fractal dimension of Mg0.5Zr2(PO4)3 was calculated from experimental data on the low-temperature (6 ≤ T/K ≤ 50) heat capacity, and the topology of the phosphate’s structure was estimated. Thermodynamic properties of structurally related phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) were compared.  相似文献   

13.
The mixed‐valent oxotantalate Eu1.83Ta15O32 was prepared from a compressed mixture of Ta2O5 and the metals in a sealed Ta ampoule at 1400 °C. The crystal structure was determined by means of single crystal X‐ray diffraction: space group R3¯, a = 777.2(6) pm and c = 3523.5(3) pm, Z = 3, 984 symmetrically independent reflections, 83 variables, RF = 0.027 for I > 2σ (I). The structure is isotypic to Ba2Nb15O32. The salient feature is a [Ta(+8/3)6O12iO6a] cluster consisting of an octahedral Ta6 core bonded to 12 edge‐bridging inner and six outer oxygen atoms. The clusters are arranged to slabs which are sandwiched by layers of [Ta(+5)3O13] triple octahedra. Additional Ta(+5) and Eu(+2) atoms provide the cohesion of these structural units. Twelve‐fold coordinated Eu(+2) atoms are situated on a triply degenerate position 33 pm displaced from the threefold axis of symmetry. A depletion of the Eu(+2) site from 6 to 5.5 atoms per unit cell reduces the number of electrons available for Ta‐Ta bonding from 15 to 14.67 electrons per cluster. Between 125 and 320 K Eu1.83Ta15O32 is semi‐conducting with a band gap of 0.23 eV. The course of the magnetization is consistently described with the Brillouin function in terms of a Mmol/(NAμB) versus B/T plot in the temperature range 5 K — 320 K and at magnetic flux densities 0.1 T — 5 T. At moderate flux densities (< 1 T) the magnetic moment agrees fairly well with the expected value of 7.94 μB for free Eu (2+) ions with 4f7 configuration in 8S7/2 ground state. Below 5 K, anisotropic magnetization measurements at flux densities B < 1 T point to an onset of an antiferromagnetic ordering of Eu spins within the layers and an incipient ferromagnetic ordering perpendicular to the layers.  相似文献   

14.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

15.
The temperature dependence of heat capacity C° p = f(T) of crystalline arsenate Mg0.5Zr2(AsO4)3 was studied by precision adiabatic vacuum and differential scanning calorimetry in the temperature range 8?670 K. The standard thermodynamic functions C° p (T), H°(T)–H°(0), S°(T), and G°(T)–H°(0) of the arsenate for the range from Т → 0 to 670 K and the standard formation entropy at Т = 298.15 K were calculated from the obtained experimental data. Based on the low-temperature capacity data (30–50 K) the fractal dimension D of the arsenate was determined, and the topology of its structure was characterized. The results were compared with the thermodynamic data for the structurally related crystalline phosphates M0.5Zr2(PO4)3 (M = Mg, Ca, Sr, Ba, Ni) and arsenate NaZr2(AsO4)3.  相似文献   

16.
The crystal structure of V0.985Al0.015O2 has been refined from single-crystal X-ray data at four temperatures. At 373°K it has the tetragonal rutile structure. At 323°K, which is below the first metal-insulator transition, it has the monoclinic M2 structure, where half of the vanadium atoms are paired with alternating short (2.540 Å) and long (3.261 Å) V-V separations. The other half of the vanadium atoms form equally spaced (2.935 Å) zigzag V chains. At 298°K, which is below the second electric and magnetic transition, V0.985Al0.015O2 has the triclinic T structure where both vanadium chains contain V-V bonds, V(1)-V(1) = 2.547 Å and V(2)-V(2) = 2.819 Å. At 173°K the pairing of the V(1) chain remains constant: V(1)-V(1) = 2.545 Å, whereas that of the V(2) chain decreases: V(2)-V(2) = 2.747 Å. From the variation of the lattice parameters as a function of temperature it seems that these two short V-V distances will not become equal at lower temperatures. The effective charges as calculated from the bond strengths at 298 and 173°K show that a cation disproportionation has taken place between these two temperatures. About 20% of the V4+ cations of the V(1) chains have become V3+ and correspondingly 20% of the V4+ cations of the V(2) chains have become V5+. This disproportionation process would explain the difference between the two short V-V distances. Also it would explain why the TM1 transition does not take at lower temperatures.  相似文献   

17.
A nepheline hydrate I crystal, ion-exchanged using KCl(aq) at 80°C, was found to be orthorhombic, space group Pnm21, a = 8.113(3), b = 15.223(2), c = 5.1817(7)Å and showed no superlattice X-ray reflections. Structure analysis by means of Fourier and least-squares methods led to the composition K1.1Na1.9Al3Si3O12 · H2O (Z = 2, Dc = 2.40 g cm?3) and the agreement factors: R = 0.032 and Rw = 0.040. Species assigned to the observed extra framework sites were K(1), K(2), and W(1) in the 8-ring tunnels along c plus Na(1) and Na(2) in the smaller 6-ring voids forming connections in the b direction. The atoms Na(1) and Na(2) coordinated framework oxygens exclusively and were but little affected by the ion-exchange process; K(1) was found near the center of an 8-ring and had five O atoms and two water molecules as closest neighbors, while the weakly occupied K(2) site was near a 6-ring and was found to have a coordination consisting of at least five oxygens and one water. The 10% vacancy of Na(2) is compensated for by an equal amount of K(2), which does not enter the Na(2) site for sterical reasons.  相似文献   

18.
New niobium oxynitrides containing either magnesium or silicon were prepared at 1000 °C by ammonia nitridation of oxide precursors obtained via the citrate route. The products had rock-salt type crystal structures. Crystallinity was improved by annealing in 0.5 MPa N2 and the final compositions were (Nb0.95Mg0.05)(N0.92O0.08) at 1500 °C and (Nb0.87Si0.090.04)(N0.87O0.13) at 1200 °C. The magnesium and oxide ions partially co-substitute the niobium and nitride ions in the octahedral sites of the δ-NbN lattice, respectively. Silicon ions were also successfully doped together with oxide ions into the rock-salt type NbN lattice. The Si doped product exhibited relatively large displacement at the octahedral sites and was accompanied by a small amount of cation vacancies. Superconductivity was improved by annealing to obtain critical temperatures/volume fractions of Tc=17.6 K/100% for Mg- and Tc=16.2 K/95% for the Si-doped niobium oxynitrides.  相似文献   

19.
Measurements of the refractive index of both phases of the mixture 2,6-lutidina + water, near the lower critical point, are reported. For T-Tc < 0.5 K, a simple power law, Δn = (0.0471±0.001)(T-Tc)(0.338±0.003), describes the data. For 0.5 K <T-Tc < 15 K, a decorated lattice model better describes the data.  相似文献   

20.
In the samples of the Na2MoO4-MgMoO4 system quenched in the air at above 600°C, by powder X-ray diffraction two double molybdates of variable composition are detected: monoclinic alluaudite-like Na4?2x Mg1+x (MoO4)3 (0.05 ≤ x ≤ 0.35) and triclinic Na2?2y Mg2+y (MoO4)3 (0.10 ≤ y ≤ 0.40) isostructural to previously studied Na2Mg5(MoO4)6. Sodium-magnesium molybdate of the Li3Fe(MoO4)3 structure type is not revealed in this system. By spontaneous flux crystallization, the crystals are obtained and the structures of two triclinic double molybdates of the Na2Mg5(MoO4)6 structure type (space group $P\bar 1$ , Z = 1) containing magnesium and manganese are determined. The results of the refinement of site occupancies made it possible to determine the composition of the studied crystals: for the compound with magnesium (Na)0.5(Na0.2550.745)(Na0.755Mg0.245)Mg2(MoO4)3 or Na1.51Mg2.245(MoO4)3 (a = 6.9577(1) Å, b = 8.6330(2) Å, c = 10.2571(2) Å, α = 106.933(1)°, β = 104.864(1)°, γ = 103.453(1)°, R = 0.0188); for the compound with manganese (Na)0.5(Na0.330.67)(Na0.83Mn0.17)Mn2(MoO4)3 or Na1.64Mn2.17(MoO4)3 (a = 7.0778(2) Å, b = 8.8115(2) Å, c = 10.4256(2) Å, α = 106.521(1)°, β = 105.639(3)°, Γ = 103.233(1)°, R = 0.0175). The Na2Mg5(MoO4)6 structure is redetermined and it is shown that actually it corresponds to the composition Na1.40Mg2.30(MoO4)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号