首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The PIGMI (Portable Information Technologies for supporting Graphical Mathematics Investigations) Project 1 investigated the role of portable technologies in facilitating development of students' graphing skills and concepts. This paper examines the impact of a recent shift towards calculating and computing tools as increasingly accessible, everyday technologies on the nature of learning in a traditionally difficult curriculum area. The paper focuses on the use of graphic calculators by undergraduates taking an innovative new mathematics course at the Open University. A questionnaire survey of both students and tutors was employed to investigate perceptions of the graphic calculator and the features which facilitate graphing and linking between representations. Key features included visualization of functions, immediate feedback and rapid graph plotting. A follow-up observational case study of a pair of students illustrated how the calculator can shape mathematical activity, serving a catalytic, facilitating and checking role. The features of technology-based activities which can structure and support collaborative problem solving were also examined. In sum, the graphic calculator technology acted as a critical mediator in both the students' collaboration and in their problem solving. The pedagogic implications of using portables are considered, including the tension between using and over-using portables to support mathematical activity.  相似文献   

2.
In this report we present the results of a teaching study introducing the concept “power function” using a graphing calculator. The focus of our attention is on the development of the understanding of 15–16 year-old mathematics students. In the centre of our interest is their learning through graphs of power functions by discovering the properties of graphs. Our report presents the mathematical and social constructivist background together with a new deliberately constructivist approach beginning the teaching experiment with an open question. The students' cognitive and intuitive strategies and their attitudes towards computer algebra are described.  相似文献   

3.
This article reports on a qualitative study of six high school calculus students designed to build an understanding about the affect associated with graphing calculator use in independent situations. DeBellis and Goldin's (2006) framework for affect as a representational system was used as a lens through which to understand the ways in which graphing calculator use impacted students’ affective pathways. It was found that using the graphing calculator helped students maintain productive affective pathways for problem solving as long as they were using graphing calculator capabilities for which they had gone through a process of instrumental genesis (Artigue, 2002) with respect to the mathematical task they were working on. Furthermore, graphing calculator use and the affect that is associated with its use may be influenced by the perceived values of others, including parents and teachers (past, present and future).  相似文献   

4.
The purpose of this study was to investigate secondary mathematics teachers' use of the graphing calculator in their classrooms, The study examined whether algebra teachers are currently using this technology in their classrooms, their perceptions toward the technology, and any changes in the curriculum or instructional practices. A survey methodology was used in this study. The findings indicated that the use of the graphing calculator is still controversial to many algebra teachers. Teachers of algebra I were using graphing calculators to a significantly lesser degree than teachers of algebra H. However, modifications of the algebra curriculum are beginning to appear in classes using graphing calculators. Finally, a majority of algebra teachers responded that the graphing calculator was a motivational tool.  相似文献   

5.
This article describes how prospective elementary teachers examined, analyzed, and evaluated four students' written responses on a graphing task for an end‐of‐course performance assessment in a mathematics methods course. Also, they described teaching strategies that built on what students know and do not know, as shown in the fourth‐grade students' work. This course assessment provided evidence of the prospective teachers' pedagogical content knowledge. Two themes emerged in the context of this final course project: the importance of process and correct answers and the usefulness of creating rubrics.  相似文献   

6.
We explore the influence of family on adolescent students' mathematical habitus by investigating the association between students' perceptions of parental influence and their dispositions towards mathematics. A construct measuring ‘perceived parental influence’ was validated using Rasch methodology on data from 563 Cypriot students on ‘core’ and ‘advanced’ mathematics pre-university courses, and was then used to predict students' dispositions towards future study of mathematically-demanding courses at university. In most of the regression models, perceived parental influence was not associated significantly with students' dispositions towards mathematics, when other variables were included in the models. However, further statistical analysis showed that perceived parental influence is mediated by (i) the mathematics course students are studying and (ii) their mathematical inclination. We suggest that family influences on students' dispositions are significantly accounted for by students' prior choice of mathematics course and the family's inculcation of their mathematical inclination; these are important factors influencing university choices.  相似文献   

7.
This study investigated the role of function in a precalculus classroom which incorporated the graphing calculator in the instructional process. Perspectives were taken from students, teachers, and textbooks. Emphasis was placed on choice of functional symbol system when thinking and problem solving, connections across symbol systems, the role of the instructor and the textbook in learning, affective components, and the effect of the graphing calculator.The study starts with a defination of the concept of structure as it relates to function. The account of a semester-long qualitative study on students' concept images of function and its role in problem solving follows. It was found that the students involved in the study entered the graph-intensive course with predominantly symbolic notions of algebra, in part due to prior instruction. The students also possessed highly procedural views of algebraic content. These preconceptions and expectations resulted in the students' inability to effectively coordinate graphic and symbolic notions of algebra, both in procedural and conceptual realms. Implications and curricular suggestions are provided.  相似文献   

8.
Middle school students can learn to communicate with graphs in the context of appropriate Calculator‐Based Ranger (CBR) activities. Three issues about CBR activities on graphing abilities were addressed in this study: (a) the effect of CBR activities on graphing abilities; (b) the extent to which prior knowledge about graphing skills affects graphing ability; (c) the influence of instructional styles on students' graphing abilities. Following the use of CBR activities, students' graphing abilities were significantly more developed in three components _ interpreting, modeling, and transforming. Prior knowledge of graphing skills on the Cartesian coordinate plane had little effect on students' understanding of graphs. Significant differences, however, were found in students' achievement, depending on instructional styles related to differentiation, which is closely connected to transforming distance‐time graphs to velocity‐time graphs. The result of this study indicates that the CBR activities are pedagogically promising for enhancing graphing ability of physical phenomena.  相似文献   

9.
In this study, I examine how using a writers' workshop model in mathematics creates a space for students to write about their mathematical thinking and problem solving and how their writing impacts instruction. This case study of one classroom with one teacher spanned 6 weeks and included 18 implementations of an adapted version of the Writers' Workshop (WW) in a fourth‐grade mathematics class. On a biweekly basis, the data were reviewed and changes made to the model. The analysis of the students' writing revealed (a) their understandings and misunderstandings of the mathematical content, (b) their readiness for more challenging tasks, and (c) their connections to prior knowledge. Students used writing to demonstrate their understanding of mathematics and show their mathematical processes. In some cases, examining only the numerical work failed to illuminate the students' understanding, their writing provided deeper insight. Students recognized writing as a tool for learning; this was evident in interview responses.  相似文献   

10.
Understanding mathematical functions as systematic processes involving the covariation of related variables is foundational in learning mathematics. In this article, findings are reported from two investigations examining students' thinking processes with functions. The first study focused on seven middle school students' explorations with a dynamic physical model. Students were videotaped during the 20‐ to 45‐minute sessions occurring two or three times per week over a period of 2 months, and students' written work was collected. The second investigation included 19 preservice elementary and middle school teachers enrolled in a course focusing on a combination of mathematical content and pedagogy. Participants' written problem‐solving work and reflective writing were collected, and participants were individually interviewed in 50‐minute videotaped sessions. Results from both investigations indicated that students often relied on a table, or some variation of a table, as a cognitive link advancing the development of their reasoning about underlying function relationships.  相似文献   

11.
Problems in mathematical modelling and data analysis are discussed from a constructivist perspective. This approach provides students with realistic opportunities to connect mathematics to significant social and environmental problems while incorporating recent advances made possible by today's mathematically powerful calculators. Also included are methods for enhancing students' abilities to shift among a wide range of representations using the modelling capabilities in graphing utilities. Consideration is further given to the changes that technology imposes on the classroom culture, including changes in students' attitudes about modelling techniques and difficulties in locating appropriate problems. The article concludes by discussing the integration of teaching and assessment with mathematical modelling.  相似文献   

12.
This paper explores what happens when students engage with mathematical tasks that make no attempt to be connected with students' everyday life experiences. The investigation draws on the work of educators who call for a broader view of what might count as real and relevant contexts for studying mathematics. It investigates students' experiences with two imaginative tasks and reports on the students' intellectual and emotional engagement. This engagement is examined and described in terms of the character and quality of the class and group discussions generated. Findings suggest that students can indeed engage productively with mathematics when it is explored in imaginative settings and that such contexts can help students support and sustain their engagement with the mathematics in the task.  相似文献   

13.
Forty‐two studies comparing students with access to graphing calculators during instruction to students who did not have access to graphing calculators during instruction are the subject of this meta‐analysis. The results on the achievement and attitude levels of students are presented. The studies evaluated cover middle and high school mathematics courses, as well as college courses through first semester calculus. When calculators were part of instruction but not testing, students' benefited from using calculators while developing the skills necessary to understand mathematics concepts. When calculators were included in testing and instruction, the procedural, conceptual, and overall achievement skills of students improved.  相似文献   

14.
In this study, we examined 10 expert and 10 novice teachers' noticing of classroom events in China. It was found that both expert and novice teachers, who were selected from two cities in China, highly attended to developing students' mathematics knowledge coherently and developing students' mathematical thinking and ability; they also paid attention to students' self‐exploratory learning, students' participation, and teachers' instructional skills. Furthermore, compared with novice teachers, expert teachers paid greater attention to developing mathematical and high‐order thinking, and developing mathematics knowledge coherently, but paid less attention to teachers' guidance. Moreover, we further illustrated the qualitative differences and similarities in their noticing of classroom events. Finally, we discussed the findings and relevant implications.  相似文献   

15.
This study investigated K‐12 teachers' beliefs and reported teaching practices regarding calculator use in their mathematics instruction. A survey was administered to more than 800 elementary, middle and high school teachers in a large metropolitan area to address the following questions: (a) what are the beliefs and practices of mathematics teachers regarding calculator use? and (b) how do these beliefs and practices differ among teachers in three grade bands? Factor analysis of 20 Likert scale items revealed four factors that accounted for 54% of the variance in the ratings. These factors were named Catalyst Beliefs, Teacher Knowledge, Crutch Beliefs, and Teacher Practices. Compared to elementary teachers, high school teachers were significantly higher in their perception of calculator use as a catalyst in mathematics instruction. However, the higher the grade level of the teacher, the higher the mean score on the perception that calculator use may be a way of getting answers without understanding mathematical processes. The mean scores for teachers in all three grade bands indicated agreement that students can learn mathematics through calculator use and using calculators in instruction will lead to better student understanding and make mathematics more interesting. The survey results shed light on teachers' self reported beliefs, knowledge, and practices in regard to consistency with elements of the National Council of Teachers of Mathematics Principles and Standards for School Mathematics (2000) technology principle and the NCTM use of technology position paper (2003). This study extended previous research on teachers' beliefs regarding calculator use in classrooms by examining and comparing the results of teacher surveys across three grade bands.  相似文献   

16.
This article summarizes research conducted on calculator block items from the 2007 fourth‐ and eighth‐grade National Assessment of Educational Progress Main Mathematics. Calculator items from the assessment were categorized into two categories: problem‐solving items and noncomputational mathematics concept items. A calculator has the potential to be used as a problem‐solving tool for items categorized in the first category. On the other hand, there are no practical uses for calculators for noncomputational mathematics concept items. Item‐level performance data were disaggregated by student‐reported calculator use to investigate the differences in achievement of those fourth‐ and eighth‐grade students who chose to use calculators versus those who did not, and whether or not the nation's fourth and eighth graders are able to identify items where calculator use serves as an aide for solving a given mathematical problem. Results from the analysis show that eighth graders, in particular, benefit most from the use of calculators on problem‐solving items. A small percentage of students at both grade levels attempted to use a calculator to solve problems in the noncomputational mathematics concept category (items in which the use of a calculator does not serve as a tool to solve the problem).  相似文献   

17.
When students are working with hand held technology, such as graphic calculators, we usually only see the outcomes of their activities in the form of a contribution to a written solution of a mathematical problem. It is more difficult to capture their process of thinking or actions as they use the technology to solve the problem. In this paper we report on two case studies that follow the progress of students as they solve mathematical problems. We use software that works in the background of the graphic calculator capturing the students' keystrokes as they use the calculator. The aim of the research studies described in this paper was to provide insights into the working styles of these students. Through a detailed analysis of their graphic calculator keystrokes, interviews and associated written solutions we will discuss the effectiveness of their solution strategies and the efficiency of their use of the technology and identify some barriers to the use of graphic calculators in mathematical problem solving.  相似文献   

18.
When worthwhile mathematical tasks are used in classrooms, they should also become a crucial element of assessment. For teachers, using these tasks in classrooms requires a different way to analyze student thinking than the traditional assessment model. Looking carefully at students' written work on worthwhile mathematical tasks and listening carefully while students explore these worthwhile tasks can contribute to a teacher's professional development. This paper reports on a professional development activity in which teachers analyzed mathematical tasks, predicted students' achievement on tasks, evaluated students' written work, listened to students' reasoning, and assessed students' understanding. Teachers' engagement in this way can help them develop flexibility and proficiency in the evaluation of their own students' work. These experiences allow teachers the opportunity to recognize students' potential, strengthen their own mathematical understanding, and engage in conversations with peers about assessment and instruction.  相似文献   

19.
This article addresses the current state of the mathematics education system in the United States and provides a possible solution to the contributing issues. As a result of lower performance in primary mathematics, American students are not acquiring the necessary quantitative literacy skills to become successful adults. This study analyzed the impact of the Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Intermediate curriculum on fourth‐grade students' mathematics knowledge. The curriculum is a part of the FoodMASTER Initiative, which is a compilation of programs utilizing food, a familiar and necessary part of everyday life, as a tool to teach mathematics and science. Students exposed to the curriculum completed a 20‐item researcher‐developed mathematics knowledge exam (intervention n = 288; control n = 194). Overall, the results showed a significant increase in mathematics knowledge from pretest to posttest. These findings suggest that the food‐based science activities provided the students with the context in which to apply mathematical concepts to an everyday experience. Therefore, the FoodMASTER approach was successful at improving students' mathematics knowledge while building a foundation for becoming quantitatively literate adults.  相似文献   

20.
The theory of realistic mathematics education establishes that framing mathematics problems in realistic contexts can provide opportunities for guided reinvention. Using data from a study group, I examine geometry teachers' perspectives regarding realistic contexts during a lesson study cycle. I ask the following. (a) What are the participants' perspectives regarding realistic contexts that elicit students' prior knowledge? (b) How are the participants' perspectives of realistic contexts related to teachers' instructional obligations? (c) How do the participants draw upon these perspectives when designing a lesson? The participants identified five characteristics that are needed for realistic contexts: providing entry points to mathematics, using “catchy” and “youthful” contexts, selecting personal contexts for the students, using contexts that are not “too fake” or “forced,” and connecting to the lesson's mathematical content. These characteristics largely relate to the institutional, interpersonal, and individual obligations with some connections with the disciplinary obligation. The participants considered these characteristics when identifying a realistic context for a problem‐based lesson. The context promoted mathematical connections. In addition, the teachers varied the context to increase the relevance for their students. The study has implications for supporting teachers' implementation of problem‐based instruction by attending to teachers' perspectives regarding the obligations shaping their work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号