首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The differential quadrature method (DQM) has been successfully used in a variety of fields. Similar to the conventional point discrete methods such as the collocation method and finite difference method, however, the DQM has some difficulty in dealing with singular functions like the Dirac-delta function. In this paper, two modifications are introduced to overcome the difficulty encountered in solving differential equations with Dirac-delta functions by using the DQM. The moving point load is work-equivalent to loads applied at all grid points and the governing equation is numerically integrated before it is discretized in terms of the differential quadrature. With these modifications, static behavior and forced vibration of beams under a stationary or a moving point load are successfully analyzed by directly using the DQM. It is demonstrated that the modified DQM can yield very accurate solutions. The compactness and computational efficiency of the DQM are retained in solving the partial differential equations with a time dependent Dirac-delta function.  相似文献   

2.
This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.  相似文献   

3.
This paper describes two new techniques which give improved exponential finite difference solutions of Burgers’ equation. These techniques are called implicit exponential finite difference method and fully implicit exponential finite difference method for solving Burgers’ equation. As the Burgers’ equation is nonlinear, the scheme leads to a system of nonlinear equations. At each time-step, Newton’s method is used to solve this nonlinear system. The results are compared with exact values and it is clearly shown that results obtained using both the methods are precise and reliable.  相似文献   

4.
侯祥林  郑夕健  张良  刘铁林 《物理学报》2012,61(18):180201-180201
针对薄板弯曲大变形问题, 运用变分原理, 建立了薄板弯曲大变形问题的高阶非线性偏微分方程. 运用有限差分法和动态设计变量优化算法原理, 以离散坐标点的上未知挠度为设计变量, 以离散坐标点的差分方程组构建目标函数, 提出了薄板弯曲大变形挠度求解的动态设计变量优化算法, 编制了相应的优化求解程序. 分析了具有固定边界、均布载荷下的矩形薄板挠度的典型算例. 通过与有限元的结果对比, 表明了本文求解算法的有效性和精确性, 提供了直接求解实际工程问题的基础.  相似文献   

5.
Modelling distributed parameter systems (DPS) by electric circuits and fabricating the complicated equivalent circuits to evaluate system responses poses many challenging research issues for many years. Electrical modelling and analysis of distributed sensing/control of smart structures and distributed structronic systems are even scarce. This paper is to present a technique to model distributed structronic control systems with electric circuits and to evaluate control behaviors with the fabricated equivalent circuits. Electrical analogies and analysis of distributed structronic systems is proposed and dynamics and control of beam/sensor/actuator systems are investigated. To determine the equivalent circuits and system parameters, higher order partial derivatives are simplified using the finite difference method; partial differential equations (PDE) are transformed to finite difference equations and further represented by electronic components and circuits. To provide better signal management and stability, active electrical circuit systems are designed and fabricated. Electrical signals from the distributed system circuits (i.e., soft and hard) are compared with results obtained by the classical theoretical, finite element, and experimental techniques.  相似文献   

6.
Fractional order partial differential equations, as generalizations of classical integer order partial differential equations, are increasingly used to model problems in fluid flow, finance and other areas of application. In this paper we discuss a practical alternating directions implicit method to solve a class of two-dimensional initial-boundary value fractional partial differential equations with variable coefficients on a finite domain. First-order consistency, unconditional stability, and (therefore) first-order convergence of the method are proven using a novel shifted version of the classical Grünwald finite difference approximation for the fractional derivatives. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence.  相似文献   

7.
In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss–Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.  相似文献   

8.
The paper studies the properties of a structured continuum. The result of finite structure size is that difference relations fail to automatically pass into differential ones. Consideration of an infinitely small volume of the medium with laws of conservation is found impossible. The representative volume is only that volume of finite dimensions which contains a certain minimum set of elementary mesostructures. The impossibility to merely replace difference relations by differential relations lead to equilibrium equations and equations of motion of infinite order due to an infinite number of degrees of freedom in block media. golutions of these equations contain, in addition to ordinary elastic waves, a set of waves with widely different velocities, including extremely low velocities unbounded below. As shown earlier, small vibration in these media can be both decreasing and unlimitedly increasing. Hence, small vibrations are not always harmless. A dual role belongs to structure size dispersion. The latter weakens unstable vibrational phenomena, but extends the range of vibration frequencies involved in a catastrophic process such that catastrophic events may arise at quite low frequencies. The equilibrium equation can not hold in each infinitesimal volume of the medium because it is not representative for the medium as a whole. The equilibrium equation is valid only on average for sufficiently representative volumes. Hence, individual dynamic events are possible in the medium even if it is at equilibrium as a unit. This phenomenon is termed acoustic emission. The paper describes conditions under which acoustic emission initiates wave processes in their ordinary sense, i.e., initiation of waves under quasistatic stresses. The set of complex roots of the dispersion equation which are possible to interpret as the number of unstable solutions depends on the specific crack surface. At the logarithmic scale, this relation is almost linear and fits the Gutenberg-Richter earthquake repeatability law well-known in seismology.  相似文献   

9.
Analysis is carried out to study the convection heat transfer in an upper convected Maxwell fluid at a non-isothermal stretching surface. This is a generalization of the paper by Sadeghy et al. [21] to study the effects of free convection currents, variable thermal conductivity and the variable temperature at the stretching surface. Unlike in Sadeghy et al., here the governing nonlinear partial differential equations are coupled. These coupled equations are transformed in to a system of nonlinear ordinary differential equations and are solved numerically by a finite difference scheme (known as the Keller-Box method) and the numerical results are presented through graphs and tables for a wide range of governing parameters. The results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study of nonlinear convection heat transfer.  相似文献   

10.
In this paper, a transfer matrix method (TMM) in frequency domain considering fluid-structure interaction of liquid-filled pipelines with elastic constraints is proposed. The time-domain equations considering fluid-structure interaction, are transformed into frequency domain by Laplace transformation, and then twelve fourth-order ordinary differential equations and two second-order ordinary differential equations are deduced from the frequency-domain equations. The results of the fourteen frequency-domain equations are assembled into a transfer matrix, which represents the motion of a single pipe section. Combined with point matrices that describe specified boundary conditions, an overall transfer matrix for liquid-filled pipeline system can be assembled. Using the method, all the pipeline with no and rigid constraints can be easily calculated by simply setting the stiffness of the restraining springs from zero to a large number. Taking into account the longitudinal vibration, transverse vibration and torsional vibration, the proposed method can be used to analyze the pipelines with bends. Several numerical examples with different constraints are presented here to illustrate the application of the proposed method. The results are validated by measured and simulation data. Through the numerical examples, it is shown that the proposed method is efficient.  相似文献   

11.
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach  相似文献   

12.
A numerical stability analysis has been formulated to accompany the already developed explicit high-order finite difference analysis of rotationally symmetric shells subjected to time-dependent impulsive loadings. This already developed analysis utilizes a constant nodal point spacing for the spatial finite difference mesh, with the governing field differential equations formulated in terms of the transverse, meridional, and circumferential displacements as the fundamental variables. The remaining quantities which enter into the natural boundary conditions at each edge of the shell are incorporated into the complete system of equations by defining those quantities at each boundary in terms of the displacements. Surface loadings and inertia forces in each of the three displacement directions of the shell have been considered in the governing equations. Ordinary finite difference representations are used for the time derivatives. All loadings and dependent variables in the circumferential direction of the shell are expressed in Fourier series expansions. The complete system of equations is solved implicitly for the first time increment, while explicit relations are used to determine the three primary displacements within the boundary edges of the shell for the second and succeeding time increments. Separate implicit solutions at each boundary are then used to determine the remaining unspecified primary variables on and outside the boundaries. Subsequently, the remaining primary variables within the boundary edges of the shell and all secondary variables are determined explicitly. Numerical stability (or instability) of numerical solutions for given choices of spatial and time increments is determined by evaluation of the eigenvalues of the explicit coefficient matrix and comparing the maximum eigenvalue with the requirements of a stability criterion developed before by the author. Solutions for typical shells and loadings together with results of stability analyses have been included, and comparisons of the stability requirements and solutions with the requirements and solutions based upon ordinary spatial finite difference representations are included.  相似文献   

13.
自适应有限元方法是科学研究和工程设计领域中非常有效的一种求解偏微分方程的数值计算方法。这种方法是为了以尽可能小的代价取得尽可能好的计算效果。后验误差估计是实现自适应有限元计算的关键性手段。文章综合介绍了自适应有限元方法和后验误差估计在求解椭圆型方程、抛物型方程和双曲型方程方面所取得的比较新的成就。  相似文献   

14.
The governing equations of optical fiber Raman amplifier with broadband pumps in the steady state are systems of uncountable nonlinear ordinary differential equations (NODE). In this paper, the Moment method is used to reduce the uncountable system of NODE to a system of finite number of NODE. This system of equations is solved numerically. The results are compared with that of the full numerical method. It was shown that the Moment method is a precise and efficient technique for analysis of optical fiber Raman amplifier with broadband pumps.  相似文献   

15.
张荣培  王震  王语  韩子健 《物理学报》2018,67(5):50503-050503
反应扩散方程模型常被用于描述生物学中斑图的形成.从反应扩散模型出发,理论推导得到GiererMeinhardt模型的斑图形成机理,解释了非线性常微分方程系统的稳定常数平衡态在加入扩散项后会发生失稳并产生图灵斑图的过程.通过计算该模型,得到图灵斑图产生的参数条件.数值方法中采用一类有效的高精度数值格式,即在空间离散条件下采用Chebyshev谱配置方法,在时间离散条件下采用紧致隐积分因子方法.该方法结合了谱方法和紧致隐积分因子方法的优点,具有精度高、稳定性好、存储量小等优点.数值模拟表明,在其他条件一定的情况下,系统控制参数κ取不同值对于斑图的产生具有重要的影响,数值结果验证了理论结果.  相似文献   

16.
Utilizing the Timoshenko beam theory and applying Hamilton's principle, the bending vibration equations of an axially loaded beam with locally distributed internal damping of the Kelvin-Voigt type are established. The partial differential equations of motion are then discretized into linear second-order ordinary differential equations based on a finite element method. A quadratic eigenvalue problem of a damped system is formed to determine the eigenfrequencies of the damped beams. The effects of the internal damping, sizes and locations of damped segment, axial load and restraint types on the damping and oscillating parts of the damped natural frequency are investigated. It is believed that the present study is valuable for better understanding the influence of various parameters of the damped beam on its vibration characteristics.  相似文献   

17.
Adaptive mesh refinement (AMR) in conjunction with high order upwind finite difference methods has been used effectively on a variety of problems. In this paper we discuss an implementation of an AMR finite difference method that solves the equations of gas dynamics with two material species in three dimensions. An equation for the evolution of volume fractions augments the gas dynamics system. The material interface is preserved and tracked from the volume fractions using a piecewise linear reconstruction technique.  相似文献   

18.
《Revue Generale de Thermique》1996,35(417):599-614
Modelling of convective layer dryers. Using neural networks. Dryer modelling is considered in this paper. A dryer scale approach is implemented in order to write the classical differential equations through parameters such as the heat transfer coefficient or drying kinetics. The behaviour of the dryers is described by a non-linear system which integrates these equations in a transfer network using the finite difference method. The finite difference method is easy to implement, but appears to be too slow for dryer designing. So, in the second part of the study, neural networks are used to model drying process in steady state. When applying neural networks method to the design of dryers, one of the main problems is to find necessary and sufficient inputs so that the neural networks can learn transfers laws. To reduce the problem, each output is defined by a single neural network and non-dimensional numbers are used. The following step deals with the determination of the number of neurones and the minimization of output error for each efficiency (change of training points). Then, neural networks are used to simulate different configurations of dryers. Results are compared with the finite difference method and an industrial application is studied in the last chapter.  相似文献   

19.
Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are used in modeling practical superdiffusive problems in fluid flow, finance and others. In this paper, we present an accurate and efficient numerical method to solve a fractional superdiffusive differential equation. This numerical method combines the alternating directions implicit (ADI) approach with a Crank–Nicolson discretization and a Richardson extrapolation to obtain an unconditionally stable second-order accurate finite difference method. The stability and the consistency of the method are established. Numerical solutions for an example super-diffusion equation with a known analytic solution are obtained and the behavior of the errors are analyzed to demonstrate the order of convergence of the method.  相似文献   

20.
This paper is concerned with the scattering from a submerged (heavy fluid) bilaminate spherical shell composed of an outer layer of steel, and an inner layer of radially polarized piezoelectric material. The methodology used includes separation formulas for the stresses and displacements, which in turn are used (coupled with spherical harmonics) to reduce the governing equations to linear systems of ordinary differential equations. This technique uses the full equations of elasticity rather than any of the various thin-shell approximations in determining the axisymmetric scattering from a shell, normal modes of vibration for the shell, as well as voltages necessary for annihilation of a scattered pressure due to insonification of the shell by an incident plane wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号