首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Comptes Rendus Chimie》2019,22(8):557-561
The electrochemical oxidation of benzaldehyde and four hydroxybenzaldehydes was studied on platinum and glassy carbon electrodes in acetonitrile. A considerable difference was observed in electrooxidation performed on platinum and glassy carbon electrodes. All hydroxy derivatives fouled the glassy carbon electrode, but platinum was passivated only by the electrooxidation of 3-hydroxybenzaldehyde, highlighting the crucial role of the position of the substituent relative to the hydroxy group. On the glassy carbon electrode, the formation of the corresponding benzoyl radical could have taken place, which promoted the buildup of polymers on the electrode surface.  相似文献   

2.
Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate the reduction of some mono-, di-, tri-, and tetrahalopyrimidines at mercury cathodes in acetonitrile containing tetramethylammonium tetrafluoroborate. Two irreversible cyclic voltammetric waves are observed for reduction of 2-bromo-, 5-bromo-, and 2-chloropyrimidine; the first wave is due to cleavage of the carbon---halogen bond, and the second wave is attributable to reduction of pyrimidine. Cyclic voltammograms for 2,4-dichloro- and 4,6-dichloropyrimidine exhibit three cathodic waves, whereas that for 2,4,6-trichloropyrimidine shows four cathodic waves, arising from sequential cleavage of carbon---chlorine bonds as well as the reduction of pyrimidine. For the reduction of 2,4,5,6-tetrachloropyrimidine, a cyclic voltammogram exhibits four major irreversible cathodic waves corresponding to the cleavage of carbon---chlorine bonds, but the wave for reduction of pyrimidine is poorly defined. Bulk electrolyses of halopyrimidines at potentials for different stages of reduction lead to products that are consistent with expectations based upon cyclic voltammetry. In addition, our findings agree well with theoretical calculations of the relative stabilities of the various reduction intermediates. Mechanistic aspects of the reduction of halopyrimidines are discussed and, using homogeneous redox catalysis, we have determined the lifetimes of the electrogenerated radical-anions of 2-bromo- and 2-chloropyrimidine.  相似文献   

3.
The oxygen reduction reaction has been investigated on double-walled carbon nanotube (DWCNT) modified glassy carbon (GC) electrodes in acid and alkaline media using the rotating disk electrode (RDE) method. The surface morphology and composition of DWCNT samples was examined by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Aqueous suspensions of DWCNTs were prepared using Nafion and non-ionic surfactant Triton X-100 as dispersing agents. The RDE results indicated that the DWCNT modified GC electrodes are active catalysts for oxygen reduction in alkaline solution. In acid media DWCNT/GC electrodes possess poor electrocatalytic properties for O2 reduction which indicates lack of metal catalyst impurities in the DWCNT material studied. The oxygen reduction behaviour of DWCNTs was similar to that of multi-walled carbon nanotubes (MWCNTs) observed in our previous studies.  相似文献   

4.
The electrochemical behavior of ceftriaxone was investigated on a carbon-nanotube-modified glassy carbon (GC-CNT) electrode in a phosphate buffer solution, pH = 7.40, and the results were compared with those obtained using the unmodified one [glassy carbon (GC) electrode]. During oxidation of ceftriaxone, an irreversible anodic peak appeared, using both modified and unmodified electrodes. Cyclic voltammetric studies indicated that the oxidation process is irreversible and diffusion-controlled. The number of electrons exchanged in the electrooxidation process was obtained, and the data indicated that ceftriaxone is oxidized via a one-electron step. The results revealed that carbon nanotube promotes the rate of oxidation by increasing the peak current. In addition, ceftriaxone was oxidized at lower potentials, which thermodynamically is more favorable. These results were confirmed by impedance measurements. The electron-transfer coefficients and heterogeneous electron-transfer rate constants for ceftriaxone were reported using both the GC and GC-CNT electrodes. Furthermore, the diffusion coefficient of ceftriaxone was found to be 2.74 × 10−6 cm2 s−1. Binding of ceftriaxone to human serum albumin forms a kind of electroreactive species. The percentage of interaction of ceftriaxone with protein was also addressed. A sensitive, simple, and time-saving differential-pulse voltammetric procedure was developed for the analysis of ceftriaxone, using the GC-CNT electrode. Ceftriaxone can be determined with a detection limit of 4.03 × 10−6 M with the proposed method.  相似文献   

5.
The reduction of SO2 on Pt and glassy carbon electrodes in acetonitrile-0.1 M LiBr solutions is studied by chronopotentiometric and chronovoltamperometric techniques in a wide range of SO2 concentrations. It is found that the reduction process involves an irreversible adsorption of the reaction products followed by a fast formation of a weakly soluble dithionate film which passivates the electrode surface. At sweep rates >0.1 V s?1 the electric charge associated with cathodic reaction corresponds to that of a monolayer. The dependencies of the peak current and the peak potential on the sweep rate are in agreement with the requirements of the adsorption pseudocapacitance theory. The strong effect of water on the height of the cathodic peaks is indicative of the depassivation of the electrode by some active species formed in the presence of water, SO2 and LiBr by a slow reaction.  相似文献   

6.
7.
The electrochemical behavior of the herbicide chloridazon, I (pyrazon), at different pH is described. The electrode reaction (one wave in acidic media and another in alkaline media), investigated using direct current and pulse voltammetry, controlled-potential coulometry, and HPLC-MS, is a combination of the electroreduction (two-electron in the first step) and a kinetic process as a result of which simple compounds (HCl, NH3) are released and, moreover, a five-membered pyrrole cycle is formed in strongly acid media. Products of the kinetic reaction are further reducible. The dissociation constant of I, pKa = 2.96, was found spectrophotometrically. Fast-scan differential pulse voltammetry (FSDPV) was used for determination of I; the detection limit was 2.7 x 10(-8) mol L(-1) (0.006 microg L(-1)) at pH 2.3. Chloridazon was determined in spiked drinking and river water.  相似文献   

8.
Stereoselective reduction of α-substituted β-keto esters is achieved by the combined use of hydrostannane/organotin triflate. syn-Aldols are obtained with more than 90% selectivities.  相似文献   

9.
Membrane glassy carbon electrodes modified with cation-exchangers (Eastman AQ-29D, laponite, or polystyrene sulfonate) entrapped between the membrane and the carbon surface were used to study the electrochemical behavior of herbicides and plant growth regulators from the quaternary ammonium family. Cations are shown to incorporate in the entrapped solutions containing negatively charged cation-exchangers, because of favorable electrostatic interactions. In the case of nonelectroactive cations, collection of mepiquat, chlormequat and difenzoquat from the bulk solution is assessed from the competition in ion-exchange equilibrium between one of the above-mentioned cations and the electroactive diquat cation. An attractive property results from the use of spinach ferredoxin as cation-exchanger inside the membrane electrode. Promotion of ferredoxin is shown to be evidenced as a result of the collection of nonelectroactive cations from the bulk solution. Prospects of such modified membrane electrodes in the environmental field are discussed.  相似文献   

10.
2-Nitroalkyl- and 2-nitroaralkyl-2-oxazolines are readily converted, in one step, to α-nitroalkyl- and α-nitroaralkylcarboxylic esters on treatment with the appropriate alcohol and trifluoroacetic acid (TFA). The initial products of the ring cleavage are the TFA salts of the ammonioalkyl esters of α-nitroalkyl- and α-nitroaralkylcarboxylic acids. These salts undergo facile transesterification to the α-nitrocarboxylic esters on refluxing with the appropriate alcohol.  相似文献   

11.
基于多壁碳纳米管修饰玻碳电极对阿替洛尔的催化作用,建立了测定阿替洛尔的电化学分析方法。多壁碳纳米管修饰玻碳电极与裸玻碳电极相比,显著提高了阿替洛尔的氧化峰电流,降低了氧化峰电位,提高了测定的灵敏度。该电极测定阿替洛尔的线性范围为4.9×10-6~6.3×10-4mol/L,检出限为2×10-6mol/L。对1.3×10-4mol/L阿替洛尔进行11次平行测定,相对标准偏差为4.4%。此法可用于阿替洛尔片剂中阿替洛尔的测定。  相似文献   

12.
The most abundant fragment produced by electron bombardment of esters of the type R1R2C(OR3)CO2R4 is the R1R2C = \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {\rm O}\limits^{{\rm + } \cdot } $\end{document}R3 ion. Methyl glycollate (R1 = R2 = R3 = H, R4 = Me) eliminates the HCO˙ radical by a complex rearrangement involving the methylenic hydrogen atoms. The methyl and ethyl esters of methoxyacetic acid (R1 = R2 = H, R3 = Me, R4 = Me or Et) eliminate formaldehyde by the McLafferty rearrangement.  相似文献   

13.
14.
On the basis of measurements using rotating disc, rotating ring disc and stationary glassy carbon electrodes, together with polarization curves, reaction order and stoichiometric number determinations, a mechanism for the reduction of oxygen in aqueous solution at pH>10 is proposed. This involves an initial electron transfer, followed by rate-determining surface migration of O2? ions to active sites on the electrode surface. Differences between our interpretation of the experimental results and the conclusions of other investigators are discussed.  相似文献   

15.
α-Alkylacrylic esters and α-alkylacrylonitriles have been synthesized by cracking their cyclopentadiene adducts. The latter were derived by treatment of the lithium enolates of cyclopentadiene-blocked acrylates or acrylonitriles with alkyl halides.  相似文献   

16.
α-Silyl group activates carbamates toward electrochemical oxidationwhich results in facile cleavage of carbon-silicon bond and regioselective introduction of methanol at α-carbon.  相似文献   

17.
18.
The α-tocopheroxyl radical was generated voltammetrically by one-electron oxidation of the α-tocopherol anion (r1/2=−0.73 V versus Ag|Ag+) that was prepared by reacting α-tocopherol with Et4NOH in acetonitrile (with Bu4NPF6 as the supporting electrolyte). Cyclic voltammograms recorded at variable scan rates (0.05–10 V s−1), temperatures (−20 to 20°C) and concentrations (0.5–10 mM) were modelled using digital simulation techniques to determine the rate of bimolecular self-reaction of α-tocopheroxyl radicals. The k values were calculated to be 3×103 l mol−1 s−1 at 20°C, 2×103 l mol−1 s−1 at 0°C and 1.2×103 l mol−1 s−1 at −20°C. In situ electrochemical-EPR experiments performed at a channel electrode confirmed the existence of the α-tocopheroxyl radical.  相似文献   

19.
20.
Recently, a novel enzymatic method was developed for determination of homocysteine. This method utilizes the electrochemical hydrogen sulfide sensor along with methionine α,γ‐lyase to accomplish the fast, accurate, sensitive and selective measurements. As a continuation of this work, another enzyme, homocysteine α,γ‐lyase, was used and the parallel experiments of using both enzymes were carried out against the effect of pH, sensitivity, linearity, and interferences, in an intended comparison between these two enzymes. The excellent linearity of amperometric currents against homocysteine concentrations, high sensitivities and low detection limits for both enzymes reconfirmed that the electrochemical method is superior over other analytical means. The high enzymatic activity of methionine α,γ‐lyase surpassing homocysteine α,γ‐lyase endowed the former higher sensitivity, lower detection limit and faster response than the latter, suggesting methionine α,γ‐lyase a better candidate for homocysteine measurement by electrochemical method. The differences between these two enzymes on the trends of response time and sensitivity at different pH environments, reactivity toward several forms of homocysteine as well as on the interference from several agents were also addressed and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号