首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diborane(6) as a H-bridged dimer of monoborane can be converted cleanly by two-electron reduction into diborane(6) dianion, which is isoelectronic with ethane, through B-B σ-bond formation when each boron atom has a bulky ligand on it. The existence of the B-B σ bond is supported by the X-ray molecular structure [B-B bond length of 1.924(3) ?], NMR studies, magnetic susceptibility measurements, and DFT calculations. Stepwise hydride abstraction reactions of the diborane(6) dianion produce the corresponding H-bridged diborane(5) anion and doubly H-bridged diborane(4) without B-B bond scission.  相似文献   

2.
A novel trinuclear complex, [Co(NiL)2(H2O)2](ClO4)2 · 2C2H5OH, was prepared by self-assembly using [NiL] as a new complex ligand; L is the dianion of dimethyl 5,6,7,8,15,16-hexahydro-6,7-dioxodibenzo[1,4,8,11]tetraazacyclotetradecine-13,18-dicarboxylate. The structure of the trinuclear complex was determined by X-ray crystallography. The CoII ion is at the center of the trinuclear complex cation and occupies a distorted octahedral O6 environment, approximating to O h with a 4 T 1g ground state for CoII that has an unquenched spin–orbit coupling reflected in the magnetic properties. Two NiII ions reside in completely same and slightly distorted square-planar N4 coordination geometries. CoII and each NiII are bridged by an oxamido group from one of the two macrocyclic ligands (L). O—H...O and ... interactions link the trinuclear fragments, perchlorate ions and C2H5OH molecules to form a three-dimensional supramolecular architecture.  相似文献   

3.
Rate enhancements for the reduction of dioxygen by a Mn(II) complex were observed in the presence of redox-inactive group 2 metal ions. The rate changes were correlated with an increase in the Lewis acidity of the group 2 metal ions. These studies led to the isolation of heterobimetallic complexes containing Mn(III)-(μ-OH)-M(II) cores (M(II) = Ca(II), Ba(II)) in which the hydroxo oxygen atom is derived from O(2). This type of core structure has relevance to the oxygen-evolving complex within photosystem II.  相似文献   

4.
2-Benzoylphenolato-(2,2′-((2,2-dimethylpropane-1,3-diyl)bis((nitrilo)(phenylmethylidyne)))-diphenolato-manganese(III) methanol solvate, [Mn(C31H28N2O2)(C13H9O2)]·CH3OH (1), was synthesized and characterized by FTIR, UV–vis, TG-FTIR, TG/DSC, molar conductivity, magnetic moment measurement, and quantum chemical calculations. During the synthesis, partial hydrolysis of ligand is observed. The compound was obtained as amorphous, dark-brown powder. The effects of organic solvents of various polarities on the UV–vis spectra of ligands and complex were investigated. In addition, the IR and UV–vis spectra were also calculated and compared with the experimental data. A single crystal for analysis was obtained by dissolving the amorphous complex in methanol, and slow evaporation of solvent at 4 °C. Single-crystal X-ray analysis indicated that the methanol molecules are not incorporated into the crystal lattice after the recrystallization process ([Mn(C31H28N2O2)(C13H9O2)] (2)). In the structure Mn(III) is surrounded by two nitrogens and four oxygens of deprotonated Schiff base and α-hydroxy ketone ligands, and adopts a distorted octahedral geometry.  相似文献   

5.
Isrow D  Captain B 《Inorganic chemistry》2011,50(13):5864-5866
The reaction of Ni(COD)(2) with two equivalents of the TEMPO radical at 68 °C affords the 16 e(-) "bow-tie" complex Ni(η(2)-TEMPO)(2), 1, in 78% yield. Compound 1 reacts with tert-butyl isocyanide and phenylacetylene at room temperature to yield the 16 e(-) distorted square planar nickel complexes Ni(η(2)-TEMPO)(η(1)-TEMPO)(CN(t)Bu), 2, and Ni(η(2)-TEMPO)(η(1)-TEMPOH)(CCPh), 4, respectively. The facile reactivity of 1 is aided by the transition of the TEMPO ligand from an η(2) to η(1) binding mode. Complex 4 is an unusual example of hydrogen atom transfer from phenylacetylene to a coordinated TEMPO ligand.  相似文献   

6.
Monoanionic tridentate ligands LHa and LHb containing ONSe and ONTe donor sequences and their Pd2+ and Pt2+ derivatives were synthesized and characterized. The formation of a five- and a six-membered ring around the central metal atom and associative phenomena in solutions provide extra stability to the metal complexes.  相似文献   

7.
New square-planar (Ph3P)NiII(o-Tol)(ISQ-Pri) (1), (Ph3P)NiII(o-Tol)(ISQ-Me) (2), (Ph3P)NiII(o-Tol)(ISQ-But) (3) nickel complexes (where ISQ-Pri = 4,6-di-tert-butyl-N-(2,6-di-iso-propylphenyl)-o-iminobenzosemiquinonate, ISQ-Me = 4,6-di-tert-butyl-N-(2,6-di-methylphenyl)-o-iminobenzosemiquinonate, ISQ-But = 4,6-di-tert-butyl-N-(2,5-di-tert-butylphenyl)-o-iminobenzosemiquinonate, o-Tol = o-tolyl ligand) have been synthesized. Complexes contain σ-bound o-tolyl and neutral donor ligand Ph3P. The sterical hindrances of N-aryl in o-iminobenzosemiquinonate ligands lead to the tetrahedral distortion of square-planar configurations of complexes as it was established using EPR spectroscopy.  相似文献   

8.
Tricarbonyl-η5-pentadienylmanganese reacts with mercaptans RSH, R = Ph, C6F5, m-NH2C6H4, p-NH2C6H4, and HSCH2CH2 in the presence of ECH2CH2E, E = -PPh2 or -NH2 to give novel stable terminal thiolate mononuclear complexes fac-Mn(CO)3(SR)(Ph2PCH2CH2PPh22-P,P′) for R = Ph, C6F5, m-NH2C6H4, p-NH2C6H4, and HSCH2CH2 and fac-Mn(CO)3(SR)(H2NCH2CH2NH22-N,N′) for R = Ph and C6F5. Upon reaction of tricarbonyl-η5-pentadienylmanganese with ethylenediamine a dinuclear complex [fac-Mn(CO)3(μ-H2NCH2CH2NH-κ2-N,N′)]2 was formed wherein the diaminyl ligand functions in the capacity of chelating and bridging ligand.  相似文献   

9.
10.
11.
A micromechanism of CO adsorption and a new concept of σ-π coordination on transition metal are proposed in this article. Based on experimental facts, we assume CO 5σ- and/ or CO 1 π interacts with the representative M.O.s of the metal valence band, ψ(Mi, Vs) and ψ(Mi, Vd), to form the bonding M.O. group and antibonding M.O. group. The bonding group is located below the Fermi level (Ef), in which some M.O.s are much more characteristic of metal orbitais (denoted as M-CO σ-bondings) while some M.O.s exhibit slight metal orbital characteristics, which belong to the excited valence M.O.s of adsorbed CO, conventionally assigned as adsorbed CO 5σ, CO 1 π and CO 4σ. The calculated data indicate that the peak positions of adsorbed CO 5σ, CO 1 π and CO 4σ are significantly higher than their corresponding M.O.s in the gaseous CO molecule, i.e. adsorbed CO is in an excited (or activated) state. The total energy generated (ΔE) from adsorbed CO 5σ, CO 1 π and CO 4σ can be used as a qualitative parameter for characterizing the ability for CO dissociation. On the other hand, the antibonding empty M.O. group of M-CO is located above the Ef, which exhibits some characteristics of metal d orbitais. The hybridization of CO 2π with dπ- orbitais in the Vs, Vd bands and dπ orbitais of the antibonding M.O. group of M-CO bondings results in the formation of unoccupied M.O.s with CO 2π-M dπ character. These M.O.s plus those unoccupied M.O.s without CO 2π-M dπ character contribute the adsorbate-derived resonances, located 3-5 eV above EF and observed by Inverse Photo-Emission (IPE) difference spectra. We have used orbital overlap integrals of S(CO 5σ, dσ, Vd) and S(CO 2π, dπ, Vd) to characterize the relative competitive abilities for hybridization of CO 5σ and CO 2π with d orbitais. The calculated results show that CO 5σ possesses a stronger ability to hybridize d orbitals in the Vd band than does CO 2π-, thus the peaks of adsorbate-induced empty levels are shifted farther from the d band when the competitive hybridizing factor [CHF=S(CO 5σ, dσ, Vd)/S(CO 2π, dπ, Vd)] is increased. The calculated data demonstrate that the peak positions of CO adsorbate-derived resonances of Cu, Ni, Pd and Pt metals, observed by IPE difference spectra, are in good parallel with their CHF values. Moreover, the values of CHE also demonstrate that CO σ-bonding stimulates d electrons to transfer upward from the d band to the Vs band, where much more CO 2π-M dπ character exists. We propose here a new concept of d back-donation, i.e. d electrons transfer from the occupied d band to the unoccupied M.O.s exhibiting CO 2π-M dπ character in the Vs and Vd bands, which weakens the π bond of C-O and simultaneously strengthens the M-C bond; these phenomena have been confirmed by IR spectroscopy and EELS. The d back-donation is represented by the B bonding function. The calculations of A, B and AB bonding functions indicate that the AB bonding function of CO adsorption on Cu is significantly smaller than that on Ni, Pd and Pt, so that CO adsorbtion is weak on Cu and is strong on Ni, Pd and Pt. Our micromechanism and our new concept of σ-π coordination provide a unified interpretation of various CO adsorption electronic spectra from below to above the EF, i.e. from occupied orbitals to empty orbitals; and a unified interpretation of the adsorbate vibration spectra measured by EELS and IR spectroscopy. The advantages of our new concept have been discussed and compared with the conventional concepts of Blyholder and CO 2π-derived resonances.  相似文献   

12.
13.
14.
The unusual Y-shaped structure of the recently reported three-coordinate Pt complex Pt[NHC(Dip)(2)](SiMe(2)Ph)(2) (NHC = N-heterocyclic carbene; Dip = 2,6-diisopropylphenyl) was considered a snapshot of the reductive elimination of disilane. A density functional theory study indicates that this structure arises from the strong trans influence of the extremely σ-donating carbene and silyl ligands. Though this complex can be understood to be a Pt(II) disilyl complex bearing a distorted geometry due to the Jahn-Teller effect, its (195)Pt NMR chemical shift is considerably different from those of Pt(II) complexes but close to those of typical Pt(0) complexes. Its Si···Si bonding interaction is ~50% of the usual energy of a Si-Si single bond. The interaction between the Pt center and the (SiMe(2)Ph)(2) moiety can be understood in terms of donation and back-donation interactions of the Si-Si σ-bonding and σ*-antibonding molecular orbitals with the Pt center. Thus, we conclude that this is likely a Pt(0) σ-disilane complex and thus a snapshot after a considerable amount of the charge transfer from disilane to the Pt center has occurred. Phenyl anion (Ph(-)) and [R-Ar](-) [R-Ar = 2,6-(2,6-iPr(2)C(6)H(3))(2)C(6)H(3)] as well as the divalent carbon(0) ligand C(NHC)(2) also provide similar unusual Y-shaped structures. Three-coordinate digermyl, diboryl, and silyl-boryl complexes of Pt and a disilyl complex of Pd are theoretically predicted to have similar unusual Y-shaped structures when a strongly donating ligand coordinates to the metal center. In a trigonal-bipyramidal Ir disilyl complex [Ir{NHC(Dip)(2)}(PH(3))(2)(SiMe(3))(2)](+), the equatorial plane has a similar unusual Y-shaped structure. These results suggest that various snapshots can be shown for the reductive eliminations of the Ge-Ge, B-B, and B-Si σ-bonds.  相似文献   

15.
16.
The synthesis, characterization, and reactivity of a chromium(0) complex bearing an amine-borane moiety (η(6)-C(6)H(5)CH(2)NMe(2)·BH(3))Cr(CO)(3) (2) is reported. Photolysis of complex 2 results in the elimination of a CO ligand followed by the formation of an intramolecular σ-borane complex (η(1)-(η(6)-C(6)H(5)CH(2)NMe(2)·BH(2)-H))Cr(CO)(2) (3). This species was characterized in solution by NMR spectroscopy. Reaction of complex 2 with photochemically generated (OC)(5)Cr(THF) affords a novel homobimetallic σ-borane complex (OC)(3)Cr(η(6)-C(6)H(5)CH(2)NMe(2)·BH(2)-H-Cr(CO)(5)) (4), wherein one of the BH moieties is bound to the chromium center in an η(1)-fashion. The σ-borane complex 4 was isolated in moderate to good yield (72%). The BH(3) fragment in the complexes 3 and 4 are highly dynamic involving exchange of the BH hydrogen bound to the metal with the terminal BH hydrogen atoms. The dynamics has been studied using variable-temperature NMR spectroscopy. Complexes 2 and 4 have been characterized by X-ray crystallography.  相似文献   

17.
The preparation, properties and X-ray crystal structure of [Cu(ttda)(tmen)](ClO4)2, a complex of divalent copper perchlorate with the ligands N,N,N′,N′-tetramethyl-1,2-diaminoethane (tmen) and bis-(N,N′-dimethyl-acetamido)thioether(ttda) are reported. The crystals are monoclinic with a = 15.35(1), b = 15.04(1), c = 10.91(1) A, β = 98.74(2)°, four formula units per unit cell and space group P21/n. The complex cation is shown to be penta-coordinate with a distorted square pyramidal geometry. Comparison is made with the properties and structure of the previously reported CuCl2·ttda.  相似文献   

18.
Inclusion complex formation between β-cyclodextrin and Naproxen was investigated using differential scanning calorimetry (DSC) as a function of the β-cyclodextrin-to-Naproxen molar ratio, ranging from 0:5:1 to 5:1. When these mixtures are heated above the melting temperature of Naproxen, an exothermic peak is observed at a temperature slightly higher than the melting peak of Naproxen. This peak, which has not been previously reported, has been interpreted as an exothermic energy of inclusion complex formation. The magnitude of this complex formation peak was found to be dependent upon the composition of the β-cyclodextrin and Naproxen mixture and increased in magnitude to a maximum value at a β-cyclodextrin:Naproxen molar ratio of 2:1. In addition, Naproxen recrystallization and re-melting peaks seen in the cooling and re-heating scans, respectively, decreased in magnitude with increasing molar ratio and totally disappeared for the mixture with 5:1 of β-cyclodextrin to Naproxen ratio indicative of complete inclusion of Naproxen in the cyclodextrin cavities. Complete inclusion was further reflected by the disappearance of key Naproxen peaks in Fourier transform infrared spectra of samples recovered from DSC experiments. The large excess of β-cyclodextrin needed to fully complex the Naproxen was found to be due to slow kinetics. Increasing the hold time after the initial melting led to inclusion efficiencies up to 95 % even for the 2:1 mixture. These experiments suggest that ratios of β-cyclodextrin:Naproxen 2:1 or greater facilitate the process by increasing the presence of cyclodextrin molecules in the close proximity of the drug molecules and lead to high inclusion efficiencies.  相似文献   

19.
Summary Facile reaction of 2,2,6,2-terpyridine (L; terpy) with copper or zinc powders or their mixtures, in the presence of an excess of H2O2, leads to novel complexes [Cu(L)-(O2 2–)]·3H2O, [Zn(L)(O 2 2– )]·H2O and [Cu,Zn(L)2(O 2 2– )2]· 4H2O, respectively, which were isolated and characterized by elemental and micro- analysis, e.s.r., electronic, i.r. and thermogravimetric analysis in air and argon.  相似文献   

20.
Fluorinated imide, N-acetyl-2,6-difluorobenzamide (C6H3F2-2,6)C(O)NHC(O)Me 2, could be obtained through one-pot reaction of NiMe2(PMe3)3 with 2,6-difluorobenzamide (C6H3F2-2,6)C(O)NH2 1 in CO atmosphere. A postulated reaction mechanism via N–H bond cleavage and carbonylative reductive elimination on nickel center was partly experimentally confirmed. An important intermediate (C6H3F2-2,6)C(O)HNNiMe(PMe3)2 3 was isolated and structurally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号