首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary For the numerical solution of initial value problems of ordinary differential equations partitioned adaptive Runge-Kutta methods are studied. These methods consist of an adaptive Runge-Kutta methods for the treatment of a stiff system and a corresponding explicit Runge-Kutta method for a nonstiff system. First we modify the theory of Butcher series for partitioned adaptive Runge-Kutta methods. We show that for any explicit Runge-Kutta method there exists a translation invariant partitoned adaptive Runge-Kutta method of the same order. Secondly we derive a special translaton invariant partitioned adaptive Runge-Kutta method of order 3. An automatic stiffness detection and a stepsize control basing on Richardson-extrapolation are performed. Extensive tests and comparisons with the partitioned RKF4RW-algorithm from Rentrop [16] and the partitioned algorithm LSODA from Hindmarsh [9] and Petzold [15] show that the partitoned adaptive Runge-Kutta algorithm works reliable and gives good numericals results. Furthermore these tests show that the automatic stiffness detection in this algorithm is effective.  相似文献   

2.
Summary Burrage and Butcher [1, 2] and Crouzeix [4] introduced for Runge-Kutta methods the concepts ofB-stability,BN-stability and algebraic stability. In this paper we prove that for any irreducible Runge-Kutta method these three stability concepts are equivalent.Chapters 1–3 of this article have been written by the second author, whereas chapter 4 has been written by the first author  相似文献   

3.
Summary GeneralizedA()-stable Runge-Kutta methods of order four with stepsize control are studied. The equations of condition for this class of semiimplicit methods are solved taking the truncation error into consideration. For application anA-stable and anA(89.3°)-stable method with small truncation error are proposed and test results for 25 stiff initial value problems for different tolerances are discussed.  相似文献   

4.
Perturbed collocation and Runge-Kutta methods   总被引:3,自引:0,他引:3  
Summary It is well known thatsome implicit Runge-Kutta methods are equivalent to collocation methods. This fact permits very short and natural proofs of order andA, B, AN, BN-stability properties for this subclass of methods (see [9] and [10]). The present paper answers the natural question, ifall RK methods can be considered as a somewhat perturbed collocation. After having introduced this notion we give a proof on the order of the method and discuss their stability properties. Much of known theory becomes simple and beautiful.  相似文献   

5.
Summary Brown introducedk-step methods usingl derivatives. We investigate for whichk andl the methods are stable or unstable. It is seen that to anyl the method becomes unstable fork large enough. All methods withk2(l+1) are stable. Fork=1,2,..., 18 there exists a k such that the methods are stable for anyl k and unstable for anyl < k . The k are given.  相似文献   

6.
Résumé Dans cet article, nous modifions légèrement la définition de laB-stabilité donnée par J.C. Butcher [1] afin qu'elle s'applique à une plus large classe d'équations différentielles et nous donnons des caractérisations simples de cette propriété.
OnB-stability of the methods of Runge Kutta
Summary In this paper, we slightly modify the definition ofB-stability of Butcher [1], so as to cover a wider class of differential equations, and we give simple characterizations of this property.
  相似文献   

7.
Summary Brown [1] introducedk-step methods usingl derivatives. Necessary and sufficient conditions forA 0-stability and stiff stability of these methods are given. These conditions are used to investigate for whichk andl the methods areA 0-stable. It is seen that for allk andl withk1.5 (l+1) the methods areA 0-stable and stiffly stable. This result is conservative and can be improved forl sufficiently large. For smallk andl A 0-stability has been determined numerically by implementing the necessary and sufficient condition.  相似文献   

8.
This paper deals with adapting Runge-Kutta methods to differential equations with a lagging argument. A new interpolation procedure is introduced which leads to numerical processes that satisfy an important asymptotic stability condition related to the class of testproblemsU(t)=U(t)+U(t–) with , C, Re()<–||, and >0. Ifc i denotes theith abscissa of a given Runge-Kutta method, then in thenth stept n–1t n :=t n–1+h of the numerical process our interpolation procedure computes an approximation toU(t n–1+c i h–) from approximations that have already been generated by the process at pointst j–1+c i h(j=1,2,3,...). For two of these new processes and a standard process we shall consider the convergence behaviour in an actual application to a given, stiff problem.  相似文献   

9.
Summary All rational approximations to exp(z) of order 2m– (m denotes the maximal degree of nominator and denominator) are given by a closed formula involving real parameters. Using the theory of order stars [9], necessary and sufficient conditions forA-stability (respectivelyI-stability) are given. On the basis of this characterization relations between the concepts ofA-stability and algebraic stability (for implicit Runge-Kutta methods) are investigated. In particular we can partly prove the conjecture that to any irreducibleA-stableR(z) of oderp0 there exist algebraically stable Runge-Kutta methods of the same order withR(z) as stability function.  相似文献   

10.
Summary Recently the author defined the class of natural Runge-Kutta methods and observed that it includes all the collocation methods. The present paper is devoted to a complete characterization of this class and it is shown that it coincides with the class of the projection methods in some polynomial spaces.This work was supported by the Italian Ministero della Pubblica Istruzione, funds 40%  相似文献   

11.
Equilibria of Runge-Kutta methods   总被引:2,自引:0,他引:2  
Summary It is known that certain Runge-Kutta methods share the property that, in a constant-step implementation, if a solution trajectory converges to a bounded limit then it must be a fixed point of the underlying differential system. Such methods are calledregular. In the present paper we provide a recursive test to check whether given method is regular. Moreover, by examining solution trajectories of linear equations, we prove that the order of ans-stage regular method may not exceed 2[(s+2)/2] and that the maximal order of regular Runge-Kutta method with an irreducible stability function is 4.  相似文献   

12.
Summary This paper is concerned with the numerical solution of stiff initial value problems for systems of ordinary differential equations using Runge-Kutta methods. For these and other methods Frank, Schneid and Ueberhuber [7] introduced the important concept ofB-convergence, i.e. convergence with error bounds only depending on the stepsizes, the smoothness of the exact solution and the so-called one-sided Lipschitz constant . Spijker [19] proved for the case <0 thatB-convergence follows from algebraic stability, the well-known criterion for contractivity (cf. [1, 2]). We show that the order ofB-convergence in this case is generally equal to the stage-order, improving by one half the order obtained in [19]. Further it is proved that algebraic stability is not only sufficient but also necessary forB-convergence.This study was completed while this author was visiting the Oxford University Computing Laboratory with a stipend from the Netherlands Organization for Scientific Research (N.W.O.)  相似文献   

13.
Summary The approximation of linear systemsy=–A(t)y+b(t) by backward differentiation methods up to order 5 is considered. It is proved that the error does not increase if the real symmetric matrixA(t) is positive definite andA(t) is negative semi-definite.  相似文献   

14.
Multistep collocation methods for initial value problems in ordinary differential equations are known to be a subclass of multistep Runge-Kutta methods and a generalisation of the well-known class of one-step collocation methods as well as of the one-leg methods of Dahlquist. In this paper we derive an error estimation method of embedded type for multistep collocation methods based on perturbed multistep collocation methods. This parallels and generalizes the results for one-step collocation methods by Nørsett and Wanner. Simple numerical experiments show that this error estimator agrees well with a theoretical error estimate which is a generalisation of an error estimate first derived by Dahlquist for one-leg methods.  相似文献   

15.
Summary When variable stepsize variable formula methods (VSVFM's) are used in the solution of systems of first order differential equations instability arises sometimes. Therefore it is important to find VSVFM's whose zerostability properties are not affected by the choice of both the stepsize and the formula. The Adams VSVFM's are such methods. In this work a more general class of methods which contains the Adams VSVFM's is discussed and it is proved that the zero-stability of the class is not affected by the choice of the stepsize and of the formula.  相似文献   

16.
Summary Bulirsch and Stoer have shown how to construct asymptotic upper and lower bounds on the true (global) errors resulting from the solution by extrapolation of the initial value problem for a system of ordinary differential equations. It is shown here how to do this for any one-step method endowed with an asymptotically correct local error estimator. The one-step method can be changed at every step.This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04-76DP00789  相似文献   

17.
Summary In the analysis of discretization methods for stiff intial value problems, stability questions have received most part of the attention in the past.B-stability and the equivalent criterion algebraic stability are well known concepts for Runge-Kutta methods applied to dissipative problems. However, for the derivation ofB-convergence results — error bounds which are not affected by stiffness — it is not sufficient in many cases to requireB-stability alone. In this paper, necessary and sufficient conditions forB-convergence are determined.This paper was written while J. Schneid was visiting the Centre for Mathematics and Computer Science with an Erwin-Schrödinger stipend from the Fonds zur Förderung der wissenschaftlichen Forschung  相似文献   

18.
Summary This paper deals with the solution of nonlinear stiff ordinary differential equations. The methods derived here are of Rosenbrock-type. This has the advantage that they areA-stable (or stiffly stable) and nevertheless do not require the solution of nonlinear systems of equations. We derive methods of orders 5 and 6 which require one evaluation of the Jacobian and oneLU decomposition per step. We have written programs for these methods which use Richardson extrapolation for the step size control and give numerical results.  相似文献   

19.
Summary A widely used technique for improving the accuracy of solutions of initial value problems in ordinary differential equations is local extrapolation. It is well known, however, that when using methods appropriate for solving stiff systems of ODES, the stability of the method can be seriously degraded if local extrapolation is employed. This is due to the fact that performing local extrapolation on a low order method is equivalent to using a higher order formula and this high order formula may not be suitable for solving stiff systems. In the present paper a general approach is proposed whereby the correction term added on in the process of local extrapolation is in a sense a rational, rather than a polynomial, function. This approach allows high order formulae with bounded growth functions to be developed. As an example we derive anA-stable rational correction algorithm based on the trapezoidal rule. This new algorithm is found to be efficient when low accuracy is requested (say a relative accuracy of about 1%) and its performance is compared with that of the more familiar Richardson extrapolation method on a large set of stiff test problems.  相似文献   

20.
Adams methods for neutral functional differential equations   总被引:1,自引:0,他引:1  
Summary In this paper Adams type methods for the special case of neutral functional differential equations are examined. It is shown thatk-step methods maintain orderk+1 for sufficiently small step size in a sufficiently smooth situation. However, when these methods are applied to an equation with a non-smooth solution the order of convergence is only one. Some computational considerations are given and numerical experiments are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号