首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A uniformly resolvable design (URD) is a resolvable design in which each parallel class contains blocks of only one block size k, such a class is denoted k‐pc and for a given k the number of k‐pcs is denoted rk. In this paper, we consider the case of block sizes 3 and 4 (both existent). We use v to denote the number of points, in this case the necessary conditions imply that v ≡ 0 (mod 12). We prove that all admissible URDs with v < 200 points exist, with the possible exceptions of 13 values of r4 over all permissible v. We obtain a URD({3, 4}; 276) with r4 = 9 by direct construction use it to and complete the construction of all URD({3, 4}; v) with r4 = 9. We prove that all admissible URDs for v ≡ 36 (mod 144), v ≡ 0 (mod 60), v ≡ 36 (mod 108), and v ≡ 24 (mod 48) exist, with a few possible exceptions. Recently, the existence of URDs for all admissible parameter sets with v ≡ 0 (mod 48) was settled, this together with the latter result gives the existence all admissible URDs for v ≡ 0 (mod 24), with a few possible exceptions.  相似文献   

2.
Each parallel class of a uniformly resolvable design (URD) contains blocks of only one block size k (denoted k-pc). The number of k-pcs is denoted rk. The necessary conditions for URDs with v points, index one, blocks of size 3 and 5, and r3,r5>0, are . If rk>1, then vk2, and r3=(v−1−4⋅r5)/2. For r5=1 these URDs are known as group divisible designs. We prove that these necessary conditions are sufficient for r5=3 except possibly v=105, and for r5=2,4,5 with possible exceptions (v=105,165,285,345) New labeled frames and labeled URDs, which give new URDs as ingredient designs for recursive constructions, are the key in the proofs.  相似文献   

3.
Each parallel class of a uniformly resolvable design (URD) contains blocks of only one block size. A URD with v points and with block sizes three and four means that at least one parallel class has block size three and at least one has block size four. Danziger [P. Danziger, Uniform restricted resolvable designs with r=3, ARS Combin. 46 (1997) 161-176] proved that for all there exist URDs with index one, some parallel classes of block size three, and exactly three parallel classes with block size four, except when v=12 and except possibly when . We extend Danziger’s work by showing that there exists a URD with index one, some parallel classes with block size three, and exactly three parallel classes with block size four if, and only if, , v≠12. We also prove that there exists a URD with index one, some parallel classes of block size three, and exactly five parallel classes with block size four if, and only if, , v≠12. New labeled URDs, which give new URDs as ingredient designs for recursive constructions, are the key in the proofs. Some ingredient URDs are also constructed with difference families.  相似文献   

4.
 Assume that G is a 3-colourable connected graph with e(G) = 2v(G) −k, where k≥ 4. It has been shown that s 3(G) ≥ 2 k −3, where s r (G) = P(G,r)/r! for any positive integer r and P(G, λ) is the chromatic polynomial of G. In this paper, we prove that if G is 2-connected and s 3(G) < 2 k −2, then G contains at most v(G) −k triangles; and the upper bound is attained only if G is a graph obtained by replacing each edge in the k-cycle C k by a 2-tree. By using this result, we settle the problem of determining if W(n, s) is χ-unique, where W(n, s) is the graph obtained from the wheel W n by deleting all but s consecutive spokes. Received: January 29, 1999 Final version received: April 8, 2000  相似文献   

5.
In Theorem 6.1 of McSorley et al. [3] it was shown that, when v=r+c−1, every triple array TA(v,krrcc,k:r× c) is a balanced grid BG(v,k,k:r × c). Here we prove the converse of this Theorem. Our final result is: Let v=r+c−1. Then every triple array is a TA(v,k,ck,rk,k:r× c) and every balanced grid is a BG(v,k,k:r× c), and they are equivalent.Communicated by: J.D. Key  相似文献   

6.
A covering array CA(N; t, k, v) is an N × k array with entries from a set X of v symbols such that every N × t sub-array contains all t-tuples over X at least once, where t is the strength of the array. The minimum size N for which a CA(N; t, k, v) exists is called the covering array number and denoted by CAN(t, k, v). Covering arrays are used in experiments to screen for interactions among t-subsets of k components. One of the main problems on covering arrays is to construct a CA(N; t, k, v) for given parameters (t, k, v) so that N is as small as possible. In this paper, we present some constructions of covering arrays of strengths 3 and 4 via holey difference matrices with prescribed properties. As a consequence, some of known bounds on covering array number are improved. In particular, it is proved that (1) CAN(3, 5, 2v) ≤ 2v 2(4v + 1) for any odd positive integer v with gcd(v, 9) ≠ 3; (2) CAN(3, 6, 6p) ≤ 216p 3 + 42p 2 for any prime p > 5; and (3) CAN(4, 6, 2p) ≤ 16p 4 + 5p 3 for any prime p ≡ 1 (mod 4) greater than 5.  相似文献   

7.
Let X be a 4-valent connected vertex-transitive graph with odd-prime-power order p^κ(κ≥1) and let A be the full automorphism group of X.In this paper,we prove that the stabilizer Av of a vertex v in A is a 2-group if p≠5,or a {2,3}-group if p=5.Furthermore,if p=5|Av| is not divisible by 3^2.As a result ,we show that any 4-valent connected vertex-transitive graph with odd-prime-power order p^κ(κ≥1) is at most 1-arc-transitive for p≠5 and 2-arc-transitive for p=5.  相似文献   

8.
A Mendelsohn design MD(v, k, λ) is a pair (X, B) where X is a v-set together with a collection B of cyclic k-tuples from X such that each ordered pair from X, as adjacent entries, is contained in exactly λk-tuples of B. An MD(v, k, λ) is said to be self-converse, denoted by SCMD(v, k, λ) = (X, B, f), if there is an isomorphic mapping from (X, B) to (X, B−1), where B−1 = {B−1 = 〈xk, xk−1, … x2, x1〉; B = 〈x1, … ,xk〉 ∈ B.}. The existence of SCMD(v, 3, λ) and SCMD(v, 4, 1) has been settled by us. In this article, we will investigate the existence of SCMD(v, 4t + 2, 1). In particular, when 2t + 1 is a prime power, the existence of SCMD(v, 4t + 2, 1) has been completely solved, which extends the existence results for MD(v, k, 1) as well. © 1999 John Wiley & Sons, Inc. J. Combin Designs 7: 283–310, 1999  相似文献   

9.
The axially symmetric solutions to the Navier–Stokes equations are studied. Assume that either the radial component (v r ) of the velocity belongs to L (0, T;L 30)) or v r /r belongs to L (0, T;L 3/20)), where Ω0 is a neighborhood of the axis of symmetry. Assume additionally that there exist subdomains Ω k , k = 1, . . . , N, such that W0 ì èk = 1N Wk {\Omega_0} \subset \bigcup\limits_{k = 1}^N {{\Omega_k}} , and assume that there exist constants α 1, α 2 such that either || vr ||L ( 0,T;L3( Wk ) ) £ a1 or  || \fracvrr ||L ( 0,T;L3/2( Wk ) ) £ a2 {\left\| {{v_r}} \right\|_{{L_\infty }\left( {0,T;{L_3}\left( {{\Omega_k}} \right)} \right)}} \leq {\alpha_1}\,or\;{\left\| {\frac{{{v_r}}}{r}} \right\|_{{L_\infty }\left( {0,T;{L_{3/2}}\left( {{\Omega_k}} \right)} \right)}} \leq {\alpha_2} for k = 1, . . . , N. Then the weak solution becomes strong ( v ? W22,1( W×( 0,T ) ),?p ? L2( W×( 0,T ) ) ) \left( {v \in W_2^{2,1}\left( {\Omega \times \left( {0,T} \right)} \right),\nabla p \in {L_2}\left( {\Omega \times \left( {0,T} \right)} \right)} \right) . Bibliography: 28 titles.  相似文献   

10.
In this paper, we introduce a new concept -- overlarge sets of generalized Kirkman systems (OLGKS), research the relation between it and OLKTS, and obtain some new results for OLKTS. The main conclusion is: If there exist both an OLKF(6^k) and a 3-OLGKS(6^k-1,4) for all k ∈{6,7,...,40}/{8,17,21,22,25,26}, then there exists an OLKTS(v) for any v ≡ 3 (mod 6), v ≠ 21. As well, we obtain the following result: There exists an OLKTS(6u + 3) for u = 2^2n-1 - 1, 7^n, 31^n, 127^n, 4^r25^s, where n ≥ 1,r+s≥ 1.  相似文献   

11.
Let v be a positive integer and let K be a set of positive integers. A (v, K, 1)-Mendelsohn design, which we denote briefly by (v, K, 1)-MD, is a pair (X, B) where X is a v-set (of points) and B is a collection of cyclically ordered subsets of X (called blocks) with sizes in the set K such that every ordered pair of points of X are consecutive in exactly one block of B. If for all t =1, 2,..., r, every ordered pair of points of X are t-apart in exactly one block of B, then the (v, K, 1)-MD is called an r-fold perfect design and denoted briefly by an r-fold perfect (v, K, 1)-MD. If K = {k) and r = k - 1, then an r-fold perfect (v, (k), 1)-MD is essentially the more familiar (v, k, 1)-perfect Mendelsohn design, which is briefly denoted by (v, k, 1)-PMD. In this paper, we investigate the existence of 4-fold perfect (v, (5, 8}, 1)-Mendelsohn designs.  相似文献   

12.
We consider an infinitely repeated two-person zero-sum game with incomplete information on one side, in which the maximizer is the (more) informed player. Such games have value v (p) for all 0≤p≤1. The informed player can guarantee that all along the game the average payoff per stage will be greater than or equal to v (p) (and will converge from above to v (p) if the minimizer plays optimally). Thus there is a conflict of interest between the two players as to the speed of convergence of the average payoffs-to the value v (p). In the context of such repeated games, we define a game for the speed of convergence, denoted SG (p), and a value for this game. We prove that the value exists for games with the highest error term, i.e., games in which v n (p)− v (p) is of the order of magnitude of . In that case the value of SG (p) is of the order of magnitude of . We then show a class of games for which the value does not exist. Given any infinite martingale 𝔛={X k } k=1, one defines for each n : V n (𝔛) ≔En k=1 |X k+1X k|. For our first result we prove that for a uniformly bounded, infinite martingale 𝔛, V n (𝔛) can be of the order of magnitude of n 1/2−ε, for arbitrarily small ε>0. Received January 1999/Final version April 2002  相似文献   

13.
The largest number n = n(k) for which there exists a k-coloring of the edges of kn with every triangle 2-colored is found to be n(k) = 2r5m, where k = 2m + r and r = 0 or 1, and all such colorings are given. We also prove the best possible result that a k-colored Kp satisfying 1 < k < 1 + √p contains at most k − 2 vertices not in a bichromatic triangle.  相似文献   

14.
The minimal number of circuits (i.e., minimal affinely dependent subsets) in a set ofs points inR 2k−1 isr( 3 4 )+(kr)( 3 4⋅1 ) as conjectured by J.-P. Doignon, wheres=qk+r, 0≦r<q.  相似文献   

15.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

16.
In this article we prove the following theorem. For any k ≥ 3, let c(k, 1) = exp{exp{kk2}}. If v(v − 1) ≡ 0 (mod k(k −1)) and v − 1 ≡ 0 (mod k−1) and v > c(k, 1), then a B(v,k, 1) exists. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
In this paper, we focus on the existence of symmetric λ-configurations with λ = 2, 3, and 4. Three new spatial configurations (v 8)2 for v = 30, 31, and 32 are constructed. The existence of a spatial configuration (v k )2 are updated for k ⩽ 10. The existence tables for symmetric λ-configurations for λ = 3, 4, and small k are also given.  相似文献   

18.
For a graph G, we define σ2(G) := min{d(u) + d(v)|u, v ≠ ∈ E(G), u ≠ v}. Let k ≥ 1 be an integer and G be a graph of order n ≥ 3k. We prove if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v 1,...,v k , G has k vertex-disjoint cycles C 1,..., C k of length at most four such that v i V(C i ) for all 1 ≤ ik. And show if σ2(G) ≥ n + k − 1, then for any set of k independent vertices v 1,...,v k , G has k vertex-disjoint cycles C 1,..., C k such that v i V(C i ) for all 1 ≤ i ≤ k, V(C 1) ∪...∪ V(C k ) = V(G), and |C i | ≤ 4 for all 1 ≤ i ≤ k − 1. The condition of degree sum σ2(G) ≥ n + k − 1 is sharp. Received: December 20, 2006. Final version received: December 12, 2007.  相似文献   

19.
We prove a version of the Schur–Weyl duality over finite fields. We prove that for any field k, if k has at least r + 1 elements, the Schur–Weyl duality holds for the rth tensor power of a finite dimensional vector space V. Moreover, if the dimension of V is at least r + 1, the natural map ${{k\mathfrak{S}_r \to \mathsf{End}_{{\rm GL}(V)}(V^{\otimes r})}}We prove a version of the Schur–Weyl duality over finite fields. We prove that for any field k, if k has at least r + 1 elements, the Schur–Weyl duality holds for the rth tensor power of a finite dimensional vector space V. Moreover, if the dimension of V is at least r + 1, the natural map k\mathfrakSr ? EndGL(V)(V?r){{k\mathfrak{S}_r \to \mathsf{End}_{{\rm GL}(V)}(V^{\otimes r})}} is an isomorphism. This isomorphism may fail if dim k V is not strictly larger than r.  相似文献   

20.
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v -factors of λK m,n which partition the set of edges of λK m,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v -factorization of λK m,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v = 3. In this paper we will show that the conjecture is true when v = 4k − 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P 4k−1-factorization of λK m,n is (1) (2k − 1)m ⩽ 2kn, (2) (2k − 1)n ⩽ 2km, (3) m + n ≡ 0 (mod 4k − 1), (4) λ(4k − 1)mn/[2(2k − 1)(m + n)] is an integer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号