首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorine-substituted brownmillerite Ba1.95In2O4.9Cl0.1 was obtained from barium indate Ba2In2O5 by solid-phase synthesis. The ability to absorb water from the gas phase was confirmed by thermogravimetric studies. The transport properties were studied while varying the thermodynamic parameters of the external environment (T, pO2, pH2O). The chloride ions in the oxygen sublattice of barium indate Ba2In2O5 were found to affect the ion conductivity. In a humid atmosphere, the sample exhibited proton conductivity (E a = 0.54 eV), whose contribution became dominant below 300°C.  相似文献   

2.
Conductivity of perovskite phosphate–substituted solid solutions of Ba4Ca2Nb2 x P x O11 (0.0 ≤ x ≤ 0.5) was studied as a function of temperature, partial pressure of oxygen and water vapors. It is proved that the studied systems are protonic conductors at the temperatures below 600°C in the atmosphere with elevated content of water vapors (pH2O = 1.92 × 10–2 atm). Introduction of the tetrahedral [PO4] group in the complex oxide matrix of Ba4Ca2Nb2O11 results in an increase in the oxygen–ionic (dry air, pH2O = 1.91 × 10–4 atm) and protonic conductivities (wet air, pH2O = 1.92 × 10–2 atm). Is it found that the doping causes a considerable increase in chemical stability of phases with respect to carbon dioxide.  相似文献   

3.
Processes involved in the preparation of zirconia and yttria thin films by sol-gel technology from film-forming solutions (FFSs) were studied over the entire range of concentrations. The physicochemical properties, composition, and structure of the films were studied.  相似文献   

4.
(Ba1 ? x Ca x )6Nb2O11 solid solutions were synthesized. The compositions were shown to be single-phase at 0.23 ≤ x ≤ 0.47 and have a double perovskite cubic structure with an incomplete oxygen sublattice. The interaction of solid solutions with water vapor and their electrical properties were studied. In dry atmosphere, these complex oxides were mixed oxygen-hole conductors. In humid atmosphere, they intercalated water and exhibited protonic conductivity. The influence of Ba/Ca isovalent substitution, the dynamics of the oxygen sublattice, and the concentration of intercalated water on the value and contribution of protonic and hole conductivity was analyzed.  相似文献   

5.
A procedure for the synthesis of carbon-encapsulated multilayer magnetite and zirconium oxide–magnetite nanoparticles that form porous nanostructures, for use as biocompatible sorbents, is proposed. The properties, composition, dimensions, particle shapes, surface morphology, and magnetic characteristics of the products are studied.  相似文献   

6.
This work represents the results of oxygen redistribution studies at quantitative and isotopic levels in synthesis and thermal treatment of ZrO - (0 to 35 mol %) Y2O3 solid solution crystals. The crystals were grown by directed melt crystallization method in a cold container using direct high-frequency heating. The crystal oxygen content and isotopic composition data was collected with respect to stabilizer concentration and technological conditions of synthesis. The temperature and frequency relationships of crystal electroconductivity were also studied. Some strength and tribological characteristics of the given materials were represented. The solid state formation by directional melt crystallization was shown to involve oxygen isotopic exchange interaction between the melt, growing crystal, and gas phase.  相似文献   

7.
8.
Compounds described as V2O3(XO4)2, where X = S or Se, were prepared from vanadium(V) oxide mixtures with concentrated sulfuric and selenic acids. The physicochemical properties of the products were studied; for V2O3(SeO4)2, the crystal structure was determined by powder X-ray diffraction and neutron diffraction, and its key differences from the structure of V2O3(SO4)2 were identified. V2O3(SeO4)2 crystallizes in the monoclinic system with the unit cell parameters a = 15.3831(2)Å, b = 5.54096(5)Å, c = 9.71644(7)Å, β = 111.886(1)°, V = 768.51Å3, space group C2/c (no. 15).  相似文献   

9.
Double phosphate Ba1.5Fe2(PO4)3 was synthesized and structurally studied. Single crystals were synthesized by the fusion method. Cubic crystals, Z = 4, space group P213, a = 9.866(1) Å. This structure is built of polyhedrons of four types: PO4 tetrahedrons, two virtually regular FeO6 octahedrons, BaO12 twelve-vertex polyhedrons, and BaO9 nine-vertex polyhedrons. These polyhedrons share common oxygen vertices to form three-dimensional [Fe2(PO4)3]3∞ framework containing barium atoms in cavities.  相似文献   

10.
Binary systems of silica and zirconia xerogels have been prepared by hydrolysis of zirconium(IV) oxychloride in the silica gel matrix. Systems of various composition have been studied by 1H NMR, IR spectroscopy, and thermogravimetry and have been tested in a model process of hydrogen peroxide decomposition. It has been shown that the physicochemical properties of binary oxide systems can be tailored by varying the component ratio.  相似文献   

11.
Catalytic properties in relation to the hydrogen oxidation reaction and thermal stability of materials based on the nanocomposite amorphous Al2O3-nanocrystalline ZrO2 were studied.  相似文献   

12.
The surface of ceramic electrolyte ZrO2 + 9 mol % Y2O3, hereinafter referred to as YSZ (abbreviated yttria stabilized zirconia), was modified with 0.1 to 0.2 μm oxide films of ZrO2, Y2O3, and YSZ (same composition as substrate) by dip coating in alcohol solutions of the relevant salts and further annealing. The results of scanning electronic microscopy and X-ray diffraction evidence epitaxial film growth. By means of impedance spectroscopy at the temperatures of 500 to 600°C, the effect of YZS electrolyte surface modification with ZrO2, Y2O3, and YSZ films to the polarization resistance of silver electrode was studied.  相似文献   

13.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

14.
Chemisorption of SO2 and O2 on the In2O3 surface containing a zinc additive (0.4–2.7 at.%) was studied in a temperature range of 22–200 °C. At least three forms of sorbed SO2 exist on the modified In2O3 surface. The temperature affects the contribution of single forms of SO2 sorption and, hence, the change in the electric conductivity. The preliminary sorption of O2 favors the formation of a donor form of chemisorbed SO2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2228–2232, October, 2005.  相似文献   

15.
The polycrystalline Ho4Ni11In20 was obtained by arc-melting of the elements. The subsequent high temperature procedure was used for single crystal growth. Crystal structure of the compound was investigated by X-ray single crystal method: U4Ni11Ga20 type, C 2/m, a = 22.4528(17), b = 4.2947(3), c = 16.5587(13) Å, β = 124.591(5)°, R1 = 0.0276, wR2 = 0.0493 for 1989 independent reflections with [I>2σ(I)].The structure is composed of three-dimensional network from Ni and In atoms in which Ho atoms fill distorted pentagonal channels. Open image in new window  相似文献   

16.
The values of ΔH°298, S°298, H°298H°0, T, ΔH fus, and C p(T), as well as the temperature dependences of the Gibbs energy function, are calculated for Bi8O11 oxide by proven computational methods.  相似文献   

17.
Composites ZrO2-(Bi2CuO4+ 20 wt % Bi2O3) (50–80 vol % ZrO2) are synthesized and their physicochemical properties are studied. It is demonstrated that the composites comprise triple-phase mixtures of ZrO2 of a monoclinic modification, Bi2CuO4, and solid solution Bi2?x Zr x O3 + x/2 and retain their mechanical strength up to 800°C. Impedance spectroscopy is used to examine their electroconductivity at 700–800°C in the interval of partial oxygen pressures extending from 37 to 2.1 × 104 Pa. Contributions made by electronic and ionic constituents to their overall conductivity are evaluated. The best specimens’ conductivity is ~0.01 S cm?1, with the electronic and ionic transport numbers nearly equal. The composite consisting of 50 vol % ZrO2 and 50 vol % (Bi2CuO4 + 20 wt % Bi2CuO4) is tested in the role of an oxygen-separating membrane. The selective flux of oxygen in the temperature interval 750–800°C amounts to (2.2–6.3) × 10?8 mol cm?2 s?1, testifying that these materials may be used as gas-separating membranes.  相似文献   

18.
It was established by X-ray diffraction, TPR, and EPR that microemulsion (m.e.) synthesis yields the binary oxides ZrO2(m.e.) and CeO2(m.e.) and the mixed oxide Zr0.5Ce0.5O2(m.e.) in the form of a tetragonal, cubic, and pseudocubic phase, respectively, having crystallite sizes of 5–6 nm. The bond energy of surface oxygen in the (m.e.) samples is lower than in their analogues prepared by pyrolysis. Hydrogen oxidation on the oxides under study occurs at higher temperatures than CO oxidation. ZrO2(m.e.) and CeO2(m.e.) are active in O2 formation during NO + O2 adsorption, while CeO2 is active during CO + O2 adsorption, too. However, its amount here is one-half to one-third its amount in the pyrolysis-prepared samples, signifying a reduced number of active sites, which are Zr4+ and Ce4+ coordinatively unsaturated cations and Me4+-O2− pairs. O2 radical anions are stabilized in the coordination sphere of Zr4+ coordinatively unsaturated cations via ionic bonding, and in the sphere of Ce4+ cations, via covalent bonding. Ionic bonds are stronger than ionic-covalent bonds and do not depend on the ZrO2 phase composition. Zr0.5Ce0.5O2 is inactive in these reactions because of the strong interaction of Zr and Ce cations. It is suggested that Ce(4 + β)+ coordinatively unsaturated cations exist on its surface, and their acid strength is lower than that of Zr4+ and Ce4+ cations in ZrO2 and CeO2, according to the order ZrO2 > CeO2 ≥ Zr0.5Ce0.5O2. Neither TPR nor adsorption of probe molecules revealed Zr cations on the surface of the mixed oxide.  相似文献   

19.
The effect of the method used for the synthesis of NH4V3O7 on its morphology, textural parameters, and optical properties was studied. Ammonium vanadate NH4V3O7 was prepared by treating NH4VO3 in the presence of citric acid under hydrothermal (4.0 ≤ pH ≤ 5.5, T = 180–200°C, 48 h) and microwave–hydrothermal (3.5 ≤ pH ≤ 5.0, T = 180–220°C, 20 min) conditions. Self-assembled NH4V3O7 microcrystals crystallizing in monoclinic system with unit cell parameters a = 12.247(5) Å, b = 3.4233(1) Å, c = 13.899(4) Å, β = 89.72(3)°, and V = 582.3(4) Å3 (space group P21) were shown to be formed independently of the method used to treat the reaction mixture. The morphology of NH4V3O7 particles was shown to depend on рН of the reaction mass and the method of synthesis. The structural features of NH4V3O7 were studied by IR, UV, and Vis spectroscopy, and the optical bandgap was determined.  相似文献   

20.
The effect of O2, Cl2, and SO2 on electrophysical and sorption properties of powdered In2O3 with a large specific area is studied at 23–200°C. The specimen is most sensitive to Cl2 and SO2 at near-room temperatures.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 529–536.Original Russian Text Copyright © 2005 by Vinokurova, Derlyukova.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号