首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, adsorption of Ni(II) and Pb(II) from aqueous solution was investigated using activated carbon synthesized with industrial wastewater sludge. The synthesized adsorbent was analyzed using nitrogen adsorption–desorption and Fourier transfer infrared (FTIR) techniques. Batch adsorption mode was used to evaluate the effect of solution pH, contact time, adsorbent dose, initial metal ion concentration, and temperature on the adsorption capacity of the synthesized adsorbent. The kinetic data were analyzed using different kinetic models. The pseudo-second-order equation gave the best fit to the experimental data for both metal ions. The equilibrium isotherm data were analyzed using the Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) isotherm models. The results showed that the data obtained for the Ni(II) and Pb(II) adsorption are in good agreement with the Langmuir model. The Langmuir mono-layer maximum adsorption capacities for Ni(II) and Pb(II) ions were estimated to be 74.06 and 88.76 mg g?1 at 25°C, respectively. In addition, the thermodynamic studies proved that the adsorption process of both metals could be considered endothermic.  相似文献   

2.
Fine powder of Typha latifolia L. root was used for adsorption of copper and zinc ions from buffered and nonbuffered aqueous solutions. The adsorption reached equilibrium in 60 min. During this time, more than 90 % of the adsorption process was completed. The effect of initial pH, initial concentration of metal ion, and contact time was investigated in a batch system at room temperature. The optimum adsorption performance was observed at pH 5.00 and 4.25 for nonbuffered solutions of Cu(II) and Zn(II), respectively, while for buffered solutions it occurred at pH 6.00. The total metal uptake decreased on application of ammonium acetate buffer, from 37.35 to 17.00 mg g?1 and 28.80 to 9.90 mg g?1 for Cu(II) and Zn(II) solutions, respectively, with 100 mg L?1 initial concentration. The pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models were used to describe the adsorption kinetics. The experimental data followed the pseudo-second-order kinetic model. The biosorption equilibrium was well described by Langmuir and Freundlich isotherm models.  相似文献   

3.
The present study reports the competitive adsorptive removal of cadmium (Cd(II)) and zinc (Zn(II)) ions from binary systems using rice husk ash (RHA), a waste obtained from the rice husk-fired furnaces, as an adsorbent. The initial pH (pH0) affects significantly the capacity of RHA for adsorbing the metallic ions in the aqueous solution. The pH0  6.0 is found to be the optimum for the removal of Cd(II) and Zn(II) ions by RHA. The single ion equilibrium adsorption from the binary solution is better represented by the non-competitive Redlich–Peterson (R–P) and the Freundlich models than by Langmuir model in the initial metal concentration range of 10–100 mg/l. The adsorption of Zn(II) ion is more than that of Cd(II) ion, and this trend is in agreement with the single-component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined effect of Cd(II) and Zn(II) ions on RHA is generally found to be antagonistic. Non-modified Langmuir, modified Langmuir, extended-Langmuir, extended-Freundlich, Sheindorf–Rebuhn–Sheintuch (SRS), non-modified R–P and modified R–P adsorption models were tested to find the most appropriate competitive adsorption isotherm for the binary adsorption of Cd(II) and Zn(II) ions onto RHA by minimizing the Marquardt's percent standard deviation (MPSD) error function. The extended-Freundlich model satisfactorily represents the adsorption equilibrium data of Cd(II) and Zn(II) ions onto RHA.  相似文献   

4.
Binary biopolymeric beads of alginate and pectin were prepared and characterized by FTIR spectra. On to the surfaces of the prepared beads were performed static and dynamic adsorption studies of Cu(II) ions at fixed pH and ionic strength of the aqueous metal ion solutions. The adsorption data were applied to Langmuir and Freundlich isotherm equations and various adsorption parameters were calculated. The influence of various experimental parameters such as effect of time, pH, temperature, solid to liquid ratio, and the presence of salts were investigated on the adsorption of copper ions.  相似文献   

5.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   

6.
Biosorption of nickel ions from aqueous solutions by modified loquat bark waste (MLB) has been investigated in a batch biosorption process. The biosorbent MLB was characterized by FTIR analysis. The extent of biosorption of Ni(II) ions was found to be dependent on solution pH, initial nickel ions concentration, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by three widely used two-parameters Langmuir, Temkin and Freundlich isotherm models. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich isotherm model by high correlation coefficients R2. The maximum adsorption capacity was 27.548 mg/g of Ni(II) ions onto MLB. The thermodynamic analysis indicated that the biosorption behavior of nickel ions onto MLB biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative values of ΔG° (−5.84 kJ/mol) and positive values of ΔH° (13.33 kJ/mol) revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described well the biosorption experimental data. The modified loquat bark (MLB) was successfully used for the biosorption of nickel ions from synthetic and industrial electroplating effluents.  相似文献   

7.
Chitosan biopolymer chemically modified with the complexation agent 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol (BPMAMF) was employed to study the kinetics and the equilibrium adsorption of Cu(II), Cd(II), and Ni(II) metal ions as functions of the pH solution. The maximum adsorption of Cu(II) was found at pH 6.0, while the Cd(II) and Ni(II) maximum adsorption occurred in acidic media, at pH 2.0 and 3.0, respectively. The kinetics was evaluated utilizing the pseudo-first-order and pseudo-second-order equation models and the equilibrium data were analyzed by Langmuir and Freundlich isotherms models. The adsorption kinetics follows the mechanism of the pseudo-second-order equation for all studied systems and this mechanism suggests that the adsorption rate of metal ions by CHS-BPMAMF depends on the number of ions on the adsorbent surface, as well as on their number at equilibrium. The best interpretation for the equilibrium data was given by the Langmuir isotherm and the maximum adsorption capacities were 109 mg g-1 for Cu(II), 38.5 mg g-1 for Cd(II), and 9.6 mg g-1 for Ni(II). The obtained results show that chitosan modified with BPMAMF ligand presented higher adsorption capacity for Cu(II) in all studied pH ranges.  相似文献   

8.
The adsorption of indole and its 2-methyl derivative from aqueous solutions onto cobalt(II)-carboxylated diaminoethane sporopollenin (CDAE-sporopollenin) was studied using a fixed-bed column at 25+/-0.1 degrees C. Minicolumn adsorption studies showed that the breakthrough and the total adsorption capacities of CDAE-sporopollenin in the concentration range we have studied increased with increasing external ligand concentration. The characteristics of the adsorption process were investigated using Scatchard plot analysis, where the equilibrium binding data for indole on ligand exchanger gave rise to a linear plot. However, for 2-methylindole, divergence from the Scatchard plot was evident, consistent with the participation of secondary equilibrium effects in the adsorption process. The adsorption behaviors of ligands on CDAE-sporopollenin were expressed by both the Langmuir and Freundlich isotherms. The adsorption isotherm data for these ligands on the resin can be satisfactorily fitted to the Freundlich isotherm within the concentration range studied. However, in the case of 2-methylindole, the experimental data did not fit the Langmuir model, especially when a high ligand concentration range is used; this is probably due to the nonspecific interactions between the ligand exchange matrix and the methyl group present. Ligand adsorption constants and correlation coefficients for the ligands were calculated from the Langmuir and Freundlich isotherms.  相似文献   

9.
Three types of agricultural waste, citrus maxima peel (CM), passion fruit shell (PF) and sugarcane bagasse (SB), were used to produce biosorbents for removing the heavy metal ions of copper(II), cadmium(II), nickel(II) and lead(II) from a pH 5.0 solution. The properties of biosorbents were characterized using scanning electron microscopy (SEM), zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, elemental analyzer and tests of cation exchange capacity (CEC). The result indicated that the selected biosorbents possess rich carboxyl (COOH) and hydroxyl (OH) groups to produce a complexation with the heavy metals. Moreover, the negative surface charge of the biosorbent might adsorb the metal ions through the ion exchange. All of the adsorption isotherms indicated that L-type characters represented complexation and ion exchanges that were the adsorption mechanisms of biosorbents toward heavy metals. Biosorbents with higher oxygen content might generate high adsorption capacities. The adsorption capacities of CM and PF, estimated from the fitting to the Langmuir isotherm, are similar to those reported by others regarding biosorbents.  相似文献   

10.
Il palm leaf powder (OPLP), an agricultural solid waste was used as adsorbent for the removal of copper (II) ions after modification with an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), CH3(CH2)11C6H4SO3Na. The copper (II) ions adsorption is highly dependent on pH and maximum removal was observed at pH 6, above which copper (II) started to precipitate. The equilibrium adsorption data were fitted into the Langmuir and Freundlich isotherms. The Freundlich isotherm model fitted well to data with 0.989 regression coefficient (R2). The kinetics of the adsorption of copper (II) ions onto the surfactant-modified OPLP was best described by a pseudo-second-order model. Comparison of this SDBS-modified-OPLP to previously investigated adsorbents showed comparably good result, offering this material as a promising adsorbent for the treatment of waste waters containing lower concentrations of copper (II) ions.  相似文献   

11.
In this research, the herbaceous peat collected from Gavurgolu peatlands, one of the biggest Turkish peatlands, was utilized as an adsorbent for the removal of copper (II) ions from aqueous solution. Adsorption experiments were conducted under various conditions, i.e., initial concentration, temperature, and pH. While the amount of Cu (II) adsorbed on the peat increased with increasing concentration of Cu (II) ions, it was not markedly affected by temperature and pH. Percentage removal was higher at lower concentration. For example, the maximum percentage removal of Cu (II) ions for initial concentration of 3 x 10(-4) M was 97.04% at 21 degrees C and pH 5.5. The adsorption capacity (Q(0)) of the peat was 4.84 mgg(-1) from Langmuir adsorption isotherm for the concentration range of 3 x 10(-4)-6 x 10(-4) M at 21 degrees C and pH 5.5. The equilibrium time of adsorption of Cu (II) ions was 150 min and independent of concentration and temperature. The amount of Cu (II) adsorbed at equilibrium time did not considerably change with temperature and pH. It was also determined that adsorption isotherm followed both Freundlich and Langmuir. Uptake mechanism of Cu (II) ions by the peat occurs via cation exchange (especially by means of Ca(2+) and Mg(2+)) as well as copper/peat complexation. Adsorption kinetic was consistent with the pseudo-second-order model.  相似文献   

12.
The capability of Cedar bark (Cedrus atlantica Manetti) (CB) for the adsorption of Cu(II) from aqueous solutions was examined. Adsorption isotherm and kinetics of Cu(II) by CB were investigated through a number of batch adsorption experiments. The effect of experimental parameters such as initial Cu(II) concentration, adsorbent mass, initial pH and ionic strength on the removal of metal ions was examined. Equilibrium data were fitted to the Langmuir, Freundlich and Harkins–Jura isotherm models. Experimental equilibrium data were best represented by the Langmuir and Harkins–Jura isotherms. The findings revealed that the CB has the potential to be used as an adsorbent for the removal of heavy-metal ions from aqueous solutions.  相似文献   

13.
An acid-activated montmorillonite-illite type of clay collected from the Gulbarga region of Karnataka, India was examined for removing copper and zinc ions from industrial wastewater containing Cu(II), Zn(II) and minor amounts of Pb(II). Langmuir, Freundlich, Brunauer-Emmett-Teller (BET), and competitive Langmuir (two competing ions) isotherms were fitted to experimental data and the goodness of their fit for adsorption was compared. The shapes of isotherms obtained indicated multilayer adsorption of Cu(II) and monolayer adsorption of Zn(II) on the acid-activated clay. Competitive adsorption was found to be significant due to the presence of Cu(II) in the wastewater.  相似文献   

14.
The present study was carried out in a batch system using a lichen (Pseudevernia furfuracea (L.) Zopf) for the sorption of nickel(II) and copper(II) ions from water. Particularly, the effect of pH, contact time and temperature were considered. Pseudevernia furfuracea exhibited nickel(II) and copper(II) uptake of 49.87 and 60.83 mg/g at an initial pH of 4 and 5-6 at 35 degrees C respectively. Both the Freundlich and Langmuir adsorption models were suitable for describing the biosorption of nickel(II) and copper(II) by the biosorbent. Biosorption showed pseudo first order rate kinetics for nickel and copper ions. Using the equilibrium constant values obtained at 25 and 35 degrees C, the thermodynamics properties of the biosorption (deltaG degrees, deltaH degrees and deltaS degrees) were determined. The biosorption of nickel(II) and copper(II) onto Pseudevernia furfuracea was found to be endothermic.  相似文献   

15.
Removal of lead from aqueous solutions by adsorption onto coconut-shell carbon was investigated. Batch adsorption experiments were performed to find out the effective lead removal at different metal ion concentrations. Adsorption of Pb2+ ion was strongly affected by pH. The coconut-shell carbon (CSC) exhibited the highest lead adsorption capacity at pH 4.5. Isotherms for the adsorption of lead on CSC were developed and the equilibrium data fitted well to the Langmuir, Freundlich, and Tempkin isotherm models. At pH 4.5, the maximum lead adsorption capacity of CSC estimated with the Langmuir model was 26.50 mg g(-1) adsorbent. Energy of activation (Ea) and thermodynamic parameters such as DeltaG, DeltaH, and DeltaS were evaluated by applying the Arrhenius and van't Hoff equations. The thermodynamics of Pb(II) on CSC indicates the spontaneous and endothermic nature of adsorption. Quantitative desorption of Pb(II) from CSC was found to be 75% which facilitates the sorption of metal by ion exchange.  相似文献   

16.
The adsorption of copper(II), zinc(II), nickel(II), lead(II), and cadmium(II) on Amberlite IR-120 synthetic sulfonated resin has been studied at different pH and temperatures by batch process. The effects of parameters such as amount of resin, resin contact time, pH, and temperature on the ion exchange separation have been investigated. For the determination of the adsorption behavior of the resin, the adsorption isotherms of metal ions have also been studied. The concentrations of metal ions have been measured by batch techniques and with AAS analysis. Adsorption analysis results obtained at various concentrations showed that the adsorption pattern on the resin followed Freundlich isotherms. Here we report the method that is applied for the sorption/separation of some toxic metals from their solutions.  相似文献   

17.
A new biosorbent loquat (Eriobotrya japonica) leaves waste for removing cadmium (II) ions from aqueous solutions has been investigated. The extent of biosorption of Cd(II) ions was found to be dependent on solution pH, initial cadmium ion concentrations, biosorbent dose, contact time, and temperature. The experimental equilibrium biosorption data were analyzed by four widely used two-parameters Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm equations. Langmuir and Temkin isotherm models provided a better fit with the experimental data than Freundlich and Dubinin–Radushkevich isotherm models by high correlation coefficients R2. The thermodynamic analysis indicated that the biosorption behavior of cadmium ions onto loquat leaves (LL) biosorbent was an endothermic process, resulting in higher biosorption capacities at higher temperatures. The negative sign values of ΔG0 and positive values of ΔH0 revealed that the biosorption process was spontaneous and endothermic. Kinetic studies showed that pseudo-second order described the biosorption experimental data better than the pseudo-first order kinetic model. The (LL) were successfully used for the biosorption of cadmium ions from contaminated water sources.  相似文献   

18.
Viran  P.  Mahida Manish  P.  Patel 《中国化学快报》2014,25(4):601-604
The present studies highlight the effective removal of As(V) and Cd(II) from aqueous solutions by superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel. Batch removal studies were performed as a function of treatment time, initial metal ion concentration, pH, and adsorbent dose. TEM micrographs confirm the particle size distribution in the range between 5 nm and 10 rim. The simple and metal ions adsorbed nanohydrogels were characterized by FF-IR, TGA, and EDX analysis. Finally, the equilibrium removal efficiency of the nanohydrogel was analyzed according to the Langmuir and Freundlich adsorption isotherm models which showed the removal of As(V) and Cd(II) metal ions fitted to Freundlich and Langmuir isotherms, respectively. Removal efficiency order of the metal ions is As(V) 〉 Cd(II).  相似文献   

19.
The present study explores surface modification of Abelmoschus esculentus by graft copolymerization reaction using acrylonitrile as a monomer and ascorbic acid/H2O2 as a redox initiator. Further, polyacrylonitrile grafted fibers were treated with hydroxylamine to convert the nitrile group of the grafted fiber into the amidoxime group to enhance adsorption of copper ions from wastewater. The graft copolymers and amidoximated fibers were characterized by FT-IR and FE-SEM. The effects of physicochemical parameters such as pH of the solution, initial metal ion concentration, and time on Cu(II) adsorption were studied to optimize condition for maximum adsorption. In addition, Langmuir, Freundlich, and Tempkin models were applied to describe the adsorption isotherm of Cu2+ ions.  相似文献   

20.
The adsorption of Cr(VI) and Ni(II) using ethylenediaminetetraacetic acid‐modified diatomite waste (EDTA‐DW) as an adsorbent in single and binary systems was investigated. The EDTA‐DW was characterized using various analytical techniques, including Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer–Emmett–Teller measurements, X‐ray diffraction, scanning electron microscopy and energy‐dispersive spectrometry. The adsorption experiment was conducted by varying pH, adsorbent dosage, initial concentration and temperature. In the single system, the sorption data for Cr(VI) fitted the Langmuir isotherm, but the Ni(II) adsorption data fitted well the Freundlich isotherm. The maximum sorption capacity of Cr(VI) and Ni(II) was 2.9 mg g?1 at pH = 3 and 3.64 mg g?1 at pH = 8, respectively. The kinetic data for both Cr(VI) and Ni(II) followed well the pseudo‐second‐order kinetic model in single and binary systems. Meanwhile, the extended Langmuir and extended Freundlich multicomponent isotherm models were found to fit the competitive adsorption data for Cr(VI) and Ni(II). In addition, in the binary system, the existence of Ni(II) hindered the adsorption of Cr(VI), but the presence of Cr(VI) enhanced the removal of Ni(II). This study provides some realistic and valid data about the usage of modified diatomite waste for the removal of metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号