首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study Pseudomonas putida CZ1, having high tolerance to copper and zinc on the removal of toxic metals from aqueous solutions, the biosorption of Cu(II) and Zn(II) by living and nonliving P. putida CZ1 were studied as functions of reaction time, initial pH of the solution and metal concentration. It was found that the optimum pH for Zn(II) removal by living and nonliving cells was 5.0, while it was 5.0 and 4.5, respectively, for Cu(II) removal. At the optimal conditions, metal ion biosorption was increased as the initial metal concentration increased. The adsorption data with respect to both metals provide an excellent fit to the Langmuir isotherm. The binding capacity of living cells is significantly higher than that of nonliving cells at tested conditions. It demonstrated that about 40-50% of the metals were actively taken up by P. putida CZ1, with the remainder being passively bound to the bacterium. Moreover, desorption efficiency of Cu(II) and Zn(II) by living cells was 72.5 and 45.6% under 0.1M HCl and it was 95.3 and 83.8% by nonliving cells, respectively. It may be due to Cu(II) and Zn(II) uptake by the living cells enhanced by intracellular accumulation.  相似文献   

2.
Batch studies were conducted to investigate the kinetics and isotherms of Cu(II) biosorption on the biomass of green alga Spirogyra species. It is observed that the biosorption capacity of the biomass strongly depends on pH and algal dose. The maximum biosorption capacity of 133.3 mg Cu(II)/g of dry weight of biomass was observed at an optimum pH of 5 in 120 min with an algal dose of 20 g/L. Desorption studies were conducted with 133.3 mg/g of Cu(II) loaded biomass using different desorption agents including HCl, EDTA, H2SO4, NaCl, and H2O. The maximum desorption of 95.3% was obtained with HCl in 15 min. The results indicate that with the advantages of high metal biosorption capacity and satisfactory recovery of Cu(II), Spirogyra can be used as an efficient and economic biosorbent material for the removal and recovery of toxic heavy metals from polluted water.  相似文献   

3.
In this study, the economically important micro-alga (cyanobacterium) Spirulina platensis was used as biosorbent for the removal of copper from aqueous solutions. The cyanobacterium was exposed to various concentrations of copper and adsorption of copper by the biomass was evaluated under different conditions that included pH, contact time, temperature, concentration of adsorbate and the concentration of dry biomass. Increased adsorption of copper by the non-living biomass was recorded with gradually increasing pH, and a maximal uptake by the biomass was observed at pH 7. The adsorption of copper was found to increase gradually along with decrease in biomass concentration. Biosorption was found to be at a maximum (90.6%), in a solution containing 100 mg copper/L, at pH 7, with 0.050 g dry biomass and at 37 °C with 90 min of contact time. Analysis of the spectrum obtained with atomic absorption spectrophotometer (AAS), indicated that the adsorbent has a great potential to remove copper from aqueous media contributing to an eco-friendly technology for efficient bioremediation in the natural environment.  相似文献   

4.
Batch biosorption experiments were conducted to investigate the removal of Cu2+ ions from aqueous solutions by a series of bacterial strains isolated from a local activated sludge process. The characteristics of 12 isolates were identified and examined for their ability to bind Cu2+ ions from aqueous solution. Among the isolates, two species exhibited biosorption capacity >40 mg of Cu/g of dry cell. Isotherms for the biosorption of copper on bacterial cells were developed and compared, and the equilibrium data fitted well to the Langmuir and Freundlich isotherm models. The biosorption of copper increased significantly with increasing pH from 2.0 to 6.0 regardless of the species. More than 90% of copper sorbed on the cells of Bacillus sp. could be recovered by washing with 0.1 M HNO3 for 5 min. The performance of two different desorption processes was also tested and compared. The results show that five biosorption and desorption cycles are a better operation process than five successive biosorptions followed by one desorption to remove and recover copper from aqueous solution. The biosorbent could be used for at least five biosorptions and desorption cycles without loss of copper removal capacity. It can be concluded that the activated sludge or sludge-isolated bacteria could be a potential biosorbent for copper removal.  相似文献   

5.
Three types of agricultural waste, citrus maxima peel (CM), passion fruit shell (PF) and sugarcane bagasse (SB), were used to produce biosorbents for removing the heavy metal ions of copper(II), cadmium(II), nickel(II) and lead(II) from a pH 5.0 solution. The properties of biosorbents were characterized using scanning electron microscopy (SEM), zeta potential analyzer, Fourier transform infrared (FTIR) spectroscopy, elemental analyzer and tests of cation exchange capacity (CEC). The result indicated that the selected biosorbents possess rich carboxyl (COOH) and hydroxyl (OH) groups to produce a complexation with the heavy metals. Moreover, the negative surface charge of the biosorbent might adsorb the metal ions through the ion exchange. All of the adsorption isotherms indicated that L-type characters represented complexation and ion exchanges that were the adsorption mechanisms of biosorbents toward heavy metals. Biosorbents with higher oxygen content might generate high adsorption capacities. The adsorption capacities of CM and PF, estimated from the fitting to the Langmuir isotherm, are similar to those reported by others regarding biosorbents.  相似文献   

6.
Complexation of poly(ethyleneimine) (PEI) with copper(II) and nickel(II) ions was studied in a 0.5M aqueous KNO3 solution. The potentiometrically determined logarithm of the three successive formation constants (log kJ) were 8.14, 7.96, and 7.37 for Cu+2-PEI complexation and 6.74, 6.52, and 6.23 for Ni+2–PEI complexation at 25°C, according to Bjerrum's modified method. The maximum average coordination number was 3.2 for the Cu+2–PEI system and 3.7 for the Ni+2–PEI system. An entropy effect was observed in the third coordination. The wavelengths of maximum absorption of the complexes and the continuous variation method showed that at least two coordination sites of Cu+2 ion and three coordination sites of Ni+2 ion were occupied immediately by PEI as the solutions of PEI and the metal ions were mixed.  相似文献   

7.
8.
9.
Summary The heat of reaction of the anion of furan-2-carboxylic acid with cobalt(II), nickel(II) and copper(II) cations has been determined by direct calorimetry. By means of the equilibrium constants, Gibbs function and entropy were also obtained. The measurements were carried out in aqueous medium at 25 °C and an ionic strength I=1 mol dm–3 (NaNO3). The data obtained seem to indicate a bidentate character of this ligand, with the participation of both carboxylate and heterocyclic oxygen in complex formation. The behaviour of furan oxygen towards 3d metals is compared with that of thiophen sulfur and pyrrole nitrogen.  相似文献   

10.
The first row transition metal ions Mn(2+), Co(2+), and Ni(2+) have been studied by classical umbrella sampling molecular dynamics simulations. The water exchange mechanisms, estimates of reaction rates, as well as structural changes during the activation process are discussed. Mn(2+) was found to react via an I(A) mechanism, whereas Co(2+) and Ni(2+) both proceed via I(D). Reaction rate constants are generally higher than those obtained by experiment but the simply constructed metal(II) ion-water potential reproduces the relative order quite well.  相似文献   

11.
The feasibility of using bis(delta2-2-imidazolinyl)-5,5'-dioxime (H2L) for the selective extraction of iron(III) from aqueous solutions was investigated by employing an solvent-extraction technique. The extraction of iron(III) from an aqueous nitrate solution in the presence of metal ions, such as cobalt(II), copper(II) and nickel(II), was carried out using H2L in binary and multicomponent mixtures. Iron(III) extraction has been studied as a function of the pH, equilibrium time and extractant concentration. From the extracted complex species in the organic phase, iron(III) was stripped with 2 M HNO3, and later determined using atomic-absorption spectrometry. The extraction was found to significantly depend on the aqueous solution pH. The extraction of iron(III) with H2L increases with the pH value, reaching a maximum in the zone of pH 2.0, remaining constant between 2 and 3.5 and subsequently decreasing. The quantitative extraction of iron(III) with 5 x 10(-30 M H2L in toluene is observed at pH 2.0. H2L was found to react with iron(III) to form ligand complex having a composition of 1:2 (Fe:H2L).  相似文献   

12.
《Comptes Rendus Chimie》2016,19(7):841-849
In this study, newspaper scraps (NS) and maize spatha (MS) treated in turn by HNO3 and MeOH were evaluated for the biosorption of Cu2+ ions, on the basis of batch experiments. The effects of several parameters were investigated, including contact time, solution pH, shaking speed, biosorbent dosage and ionic strength. Under optimal conditions, the maximum sorption capacities (Qmax) were (60.386 ± 0.006) and (44.90 ± 0.02) μmol Cu2+ per g of sorbent, respectively, for NS and MS chemically treated with HNO3. The optimal parameters were pH: 5, contact time: 40 min and shaking speed: 100 rpm for NS, while for MS the same parameters were pH 5, 20 min and 150 rpm, respectively. It was found that Cu2+ biosorption is disfavored by an increase in ionic strength and by the presence of some interfering cations. The experimental data obtained with NS best matched the Langmuir’s sorption model (R2 = 0.994) while the Temkin model best described biosorption on MS (R2 = 0.987). The biosorption of Cu2+ on both materials followed pseudo-second order kinetics, and the desorption of Cu2+ ions was effective in 0.01 M HCl solution.  相似文献   

13.
14.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

15.
The sorption of Cu(II) on olive cake, a biomass by-product of olive oil production, has been investigated by potentiometry at pH 6, I=0.1 M NaClO4, 25 °C and under atmospheric conditions. Numerical analysis of the experimental data supports the formation of surface complexes and allows the evaluation of the corresponding formation constant, which is found to amount log β=5.1±0.4. This value is close to corresponding values given in literature for Cu(II)-humate complexes, indicating that the same type of active sites (e.g. carboxylic and phenolic groups) is responsible for the Cu(II) binding by olive cake. Addition of a competing metal ion (e.g. Eu(III) ion) in the system leads to replacement of the Cu(II) by Eu(III). Evaluation of the potentiometric data obtained from competition experiments indicates on a ionexchange mechanism. The formation constant of the Eu(III) species sorbed on olive cake is found to be log β=5.4±0.9. The results of this study are of particular interest with respect to waste water treatment technologies using biomass products as adsorbent material and environmental impact assessments regarding disposal of biomass by products in the geosphere.  相似文献   

16.
17.
This study deals with the uptake of uranyl ions from aqueous solution using bio-modified natural clinoptilolite. The biosorption experiments were carried out in a batch system. Cell immobilization process and sorption of uranyl ions were confirmed by scanning electron microscopy and inductively coupled plasma-optical emission spectroscopy techniques, respectively. The adsorption equilibrium was reached in 4 h, the optimum pH was 4.5 and the temperature had no significant effect on the uranyl biosorption. The experimental data were well fitted with Langmuir isotherm and pseudo-second-order kinetic models. The maximum sorption capacity of cell immobilized clinoptilolite was 0.148 mmol ( \( {\text{UO}}_{2}^{2 + } \) ) g?1 dry sorbent.  相似文献   

18.
The kinetics of formation of 11 complexes of nickel(II) and copper(II) ions with some azophenol derivatives in aqueous and micellar solution of a nonionic surfactant, Triton X-100, have been studied by a stopped-flow spectrophotometric method. Second order rate constants for the reactions were determined at 298 K and ionic strength 0.1 (NaClO4) in aqueous solution. In the surfactant solution, the pseudo-first-order rate constants for the complexation reactions,kobs, decreased with increasing the concentration of Triton X-100. This observation was explained by the assumption that the chelating reagents distribute between the micelle of the surfactant and bulk aqueous phase and rate-controlling reactions occur only in the bulk aqueous phase. On the basis of the relation betweenkobs and the concentration of the surfactant, the partition constants of the reagents between micellar and aqueous phases were determined.  相似文献   

19.
The behaviour of 1,10-diaza-4,7-dithiadecane (2,2,2-NSSN) in aqueous solution in equilibria with protons, Cu2+ or Ni2+ ions has been investigated potentiometrically and calorimetrically. The protonation constants for the ligand, and the stability constants for its complexes at 25°C in 0.5 mole dm?3 (K)NO3 are reported, together with the corresponding thermodynamic parameters ΔG, ΔH and ΔS. The results are compared with those for 1-aza-4-thiapentane and 1,7-diaza-4-thiaheptane. The ligand 2,2,2-NSSN forms complexes of formula ML2+ and MHL3+ with both Cu2+ and Ni2+. It is found that in the non-protonated 1:1 complexes the ligand acts as a tetradentate. In the CuHL3+ complex, the ligand is bound through one nitrogen and two sulphur donors, whereas in the NiHL3+ complex the ligand is probably bound through only one nitrogen and one sulphur donor. Explanations are suggested.  相似文献   

20.
The present study reports the competitive adsorptive removal of cadmium (Cd(II)) and zinc (Zn(II)) ions from binary systems using rice husk ash (RHA), a waste obtained from the rice husk-fired furnaces, as an adsorbent. The initial pH (pH0) affects significantly the capacity of RHA for adsorbing the metallic ions in the aqueous solution. The pH0  6.0 is found to be the optimum for the removal of Cd(II) and Zn(II) ions by RHA. The single ion equilibrium adsorption from the binary solution is better represented by the non-competitive Redlich–Peterson (R–P) and the Freundlich models than by Langmuir model in the initial metal concentration range of 10–100 mg/l. The adsorption of Zn(II) ion is more than that of Cd(II) ion, and this trend is in agreement with the single-component adsorption data. The equilibrium metal removal decreases with increasing concentrations of the other metal ion and the combined effect of Cd(II) and Zn(II) ions on RHA is generally found to be antagonistic. Non-modified Langmuir, modified Langmuir, extended-Langmuir, extended-Freundlich, Sheindorf–Rebuhn–Sheintuch (SRS), non-modified R–P and modified R–P adsorption models were tested to find the most appropriate competitive adsorption isotherm for the binary adsorption of Cd(II) and Zn(II) ions onto RHA by minimizing the Marquardt's percent standard deviation (MPSD) error function. The extended-Freundlich model satisfactorily represents the adsorption equilibrium data of Cd(II) and Zn(II) ions onto RHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号