首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The increasing resolution of three-dimensional (3D) printing offers simplified access to, and development of, microfluidic devices with complex 3D structures. Therefore, this technology is increasingly used for rapid prototyping in laboratories and industry. Microfluidic free flow electrophoresis (μFFE) is a versatile tool to separate and concentrate different samples (such as DNA, proteins, and cells) to different outlets in a time range measured in mere tens of seconds and offers great potential for use in downstream processing, for example. However, the production of μFFE devices is usually rather elaborate. Many designs are based on chemical pretreatment or manual alignment for the setup. Especially for the separation chamber of a μFFE device, this is a crucial step which should be automatized. We have developed a smart 3D design of a μFFE to pave the way for a simpler production. This study presents (1) a robust and reproducible way to build up critical parts of a μFFE device based on high-resolution MultiJet 3D printing; (2) a simplified insertion of commercial polycarbonate membranes to segregate separation and electrode chambers; and (3) integrated, 3D-printed wells that enable a defined sample fractionation (chip-to-world interface). In proof of concept experiments both a mixture of fluorescence dyes and a mixture of amino acids were successfully separated in our 3D-printed μFFE device.  相似文献   

2.
We coin a term of milli-free flow electrophoresis (mFFE) to describe mid-scale FFE with flow rates intermediate to macro-FFE and micro-FFE (μFFE). Introduced decades ago, mFFE did not find practical applications. We revive mFFE, as we view it as a viable purification complement to continuous synthesis in capillary reactors with product flow rates of ~5 to 2000 μL/min, too small for macro-FFE but too large for μFFE. The development of the tandem of continuous synthesis/purification will require the production and evaluation of a large number of prototypes of mFFE devices. As the first step, we developed a fast (<24 h) and economical (~$10) method for prototyping mFFE devices using a robotic milling machine. mFFE prototypes are constructed from two machined matching poly(methyl methacrylate) (PMMA) substrates, which are bonded in 10 min using dichloromethane to provide a strong and irreversible seal. Using the developed prototyping technology, we designed and evaluated 25 prototypes of mFFE devices. By optimizing the feed rates and rotational speeds of the drills, the depth of the electrode channels, the dimensions of the entrance and exit reservoirs, the sample flow rate, and the diameter and position of the sample input, we were able to achieve indefinitely long operation of the device with cycles of alternating 15-min electrophoresis and 0.5-min regeneration (bubble removal). The test analytes, rhodamine B and fluorescein, were baseline resolved by mFFE for flow rates ranging from 10 to 600 μL/min. These results prove that our prototyping approach is suitable for the challenging task of multi-parameter optimization of mFFE devices.  相似文献   

3.
Here, a simple micro free‐flow electrophoresis (μFFE) was developed for fluorescence sensing of monosaccharide via supermolecule interaction of synthesized boronic acid functionalized benzyl viologen (ο‐BBV) and fluorescent dye. The μFFE contained two open electrode cavities and an ion‐exchange membrane was sandwiched between two polymethylmethacrylate plates. The experiments demonstrated the following merits of developed μFFE: (i) up to 90.5% of voltage efficiency due to high conductivity of ion‐exchange membrane; (ii) a strong ability against influence of bubble produced in two electrodes due to open design of electrode cavities; and (iii) reusable and washable separation chamber (45 mm × 17 mm × 100 μm, 77 μL) avoiding the discard of μFFE due to blockage of solute precipitation in chamber. Remarkably, the μFFE was first designed for the sensing of monosaccharide via the supermolecule interaction of synthesized ο‐BBV, fluorescent dye, and monosaccharide. Under the optimized conditions, the minimum concentration of monosaccharide that could be detected was 1 × 10?11 M. Finally, the developed device was used for the detection of 0.3 mM glucose spiked in human urine. All of the results demonstrated the feasibility of monosaccharide detection via the μFFE.  相似文献   

4.
A large-scale free-flow electrophoresis (LS-FFE) is often too large for cell separation of lab scale, whereas micro-FFE (μFFE) has great difficulty in cell isolation due to easy blockage by cell accumulation in μFFE. In this study, a mid-scale FFE (MS-FFE) is developed for cell and protein separations. The volume of the separation chamber (70×40×0.1-0.8 mm) is from 280 μL to 2.24 mL, much lower than that in an LS-FFE but higher than that in a μFFE. Gravity is used for uniform flow of the background buffer only via a single pump with 16 channels and the sample is injected via an adjuster originally used for clinical intravenous injection. The experiments reveal that the hydrodynamic and electrohydrodynamic flows are much stable, and the Joule heat can be effectively dispersed without obvious positive or negative deviation as shown by the omega plots. By the device, Escherichia coli and Staphylococcus aureus, which easily accumulate to block μFFE and are separated with difficulty due to their same negative charges carried, can be well isolated under the conditions of 4.5 mM pH 8.5 Tris-boric buffer (4.5 mM Tris, 4.5 mM boric acid) with 0.10 mM ethylene diamine tetraacetic acid and 5% m/v sucrose, 200 μL/min, 800 V, and sample injection via inlet 4. The mid-scale FFE device could also be used for the separation of three model proteins of horse heart cytochrome c, myoglobin and bovine serum albumin. The device has clear significance for mid-scale separation of cells and proteins.  相似文献   

5.
Micro-free flow electrophoresis (μFFE) is a technique that facilitates continuous separation of molecules in a shallow channel with a hydrodynamic flow and an electric field at an angle to the flow. We recently developed a general theory of μFFE that suggested that an electric field non-orthogonal to the flow could improve resolution. Here, we used computer modeling to study resolution as a function of the electric field strength and the angle between the electric field and the hydrodynamic flow. In addition we used our general theory of μFFE to investigate other important influences on resolution, which include the velocity of the hydrodynamic flow, the height of the separation channel, and the magnitude and direction of the electroosmotic flow. Finally, we propose four designs that could be used to generate non-orthogonal electric fields and discuss their relative merits.  相似文献   

6.
A scale-up of analytical capillary zone electrophoresis (CZE) to preparative free-flow electrophoresis (FFE) is described. FFE allows fractionations based on charge densities in larger amounts than in CZE, enabling further off-line analysis of the fractions. Model compounds (carboxylic acids and polystyrene sulfonates) showed a similar behavior in FFE as in CZE. Diffusion and electrodynamic distortion effects are more pronounced in FFE than in CZE. A soil fulvic acid was analyzed by CZE and fractionated by FFE. A comparison of the FFE fractions with CZE measurements of the same sample using the effective mobility scale showed good agreement of the two methods.  相似文献   

7.
王平利  梁振  张丽华  单亦初  张玉奎 《色谱》2011,29(4):303-306
芯片自由流电泳(μ-FFE)是一种连续微制备或预分离技术,已在细胞、细胞器、蛋白质等生物样品的分析中发挥了重要作用。本文系统综述了μ-FFE的研究进展,侧重于介绍各种自由流芯片的结构、分离模式和应用。此外,还对μ-FFE的发展方向进行了展望。  相似文献   

8.
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 μL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.  相似文献   

9.
The low‐concentration phenazine‐1‐carboxylic acid (PCA) (=0.3 mM) extracted from fermentation broth of Pseudomonas sp. M18 was selected to be purified with a newly facile free flow electrophoresis (FFE) device with gratis gravity. Three factors of pH value and concentration of background buffer, and the cooling circle of FFE device were investigated for the purification of PCA in the FFE device. It was found that the pH value and concentration of background buffer had mild influences on the separation of PCA whether with cooling circle or not. However, the cooling circle had a much greater impact on the separation of PCA. The controlling of the band zone of PCA in FFE chamber would be difficult if without cooling circle, while the controlling would become easy if with cooling circle. Under the optimal conditions (10 mM pH 5.5 phosphate as background buffer, 30 mM pH 5.5 phosphate buffer as electrode solution, 5.46 mL/min background flux, 10 min residence time of injected sample, and 500 V), PCA could be continuously prepared from its impurities with relative high purity. The flux of sample injection was 115 μL/min, viz. 7 mL sample throughput per hour, and the recovery was up to 85%. All of the experiments indicated that the FFE technique was a good alternative tool for the study on natural biological control agents.  相似文献   

10.
Geng JZ  Shao J  Yang JH  Pang B  Cao CX  Fan LY 《Electrophoresis》2011,32(22):3248-3256
An increasing number of small biosamples (e.g. proteins and enzymes) need micropreparation in lab. However, neither large-scale free-flow electrophoresis (LS-FFE) nor chip FFE (C-FFE) could fit the growing demands. Herein, a simple quasi-chip FFE (QC-FFE) was constructed. In contrast to C-FFE, the features of QC-FFE are as follows: (i) its separation chamber is reassemblable and rewashable avoiding discard of C-FFE due to blockage of solute precipitation in chamber; (ii) its chamber size is 45 mm × 30 mm × (80-500) μm (108-654 μL volume) having function of micropreparation; (iii) there are up to 16 outlets in QC-FFE bestowing fine fraction for micropurification. The QC-FFE was used for the micropurification of model enzyme of self-digestible trypsin in crude pancreatin. Under the given conditions, the purification factor of enzyme was 11.7, the specific activity reached 6236 U/mg, the run time for 19 μL sample purification was 45 s and the throughput of trypsin was 3.34 mg/h, and the yield of pure trypsin was 55.2%. All of the results show the feasibility of enzyme micropreparation via QC-FFE. The developed device and procedure have potential use to other micropurification of protein or peptide sample.  相似文献   

11.
Miniaturizing free-flow electrophoresis - a critical review   总被引:1,自引:0,他引:1  
Free-flow electrophoresis (FFE) separation methods have been developed and investigated for around 50 years and have been applied not only to many types of analytes for various biomedical applications, but also for the separation of inorganic and organic substances. Its continuous sample preparation and mild separation conditions make it also interesting for online monitoring and detection applications. Since 1994 several microfluidic, miniaturized FFE devices were developed and experimentally characterized. In contrast to their large-scale counterparts microfluidic FFE (mu-FFE) devices offer new possibilities due to the very rapid separations within several seconds or below and the requirement for sample volumes in the microliter range. Eventually, these mu-FFE systems might find application in so-called lab-on-a-chip devices for real-time monitoring and separation applications. This review gives detailed information on the results so far published on mu-FFE chips, comprising its four main modes, namely free-flow zone electrophoresis (FFZE), free-flow IEF (FFIEF), free-flow ITP (FFITP), and free-flow field-step electrophoresis (FFFSE). The principles of the different FFE modes and the basic underlying theory are given and discussed with special emphasis on miniaturization. Different designs as well as fabrication methods and applied materials are discussed and evaluated. Furthermore, the separation results shown indicate that similar separation quality with respect to conventional FFE systems, as defined by the resolution and peak capacity, can be achieved with mu-FFE separations when applying much lower electrical voltages. Furthermore, innovations still occur and several approaches for hyphenated, more integrated systems have been proposed so far, some of which are discussed here. This review is intended as an introduction and early compendium for research and development within this field.  相似文献   

12.
When electrospray ionisation mass spectrometry (ESI-MS) is used on-line with capillary isoelectric focusing (CIEF), the presence of the carrier ampholytes creating the IEF pH gradient is not desirable. With the purpose of removing these ampholytes, we have developed a free-flow electrophoresis (FFE) device and coupled it to CIEF. The different parameters inherent to the resulting CIEF/FFE system were optimised using ultraviolet absorbance (UV) detection. The on-line coupling of this system with ESI-MS was successfully realised for three model proteins (myoglobin, carbonic anhydrase I and beta-lactoglobulin B).  相似文献   

13.
Interval free flow zone electrophoresis is a new mode of free flow zone electrophoresis (FFZE), which facilitates purification of proteins and other molecular substances at very high resolution. It can be performed in the commercially available free flow electrophoresis (FFE) apparatus Octopus. The specimens are loaded and unloaded as usual with the help of a thin buffer film flowing between the two glass plates of the FFE. However, as long as electrical current is applied to a specimen, the medium flow is turned off and conditions of static column electrophoresis are simulated within the FFE device. Thereby electrohydrodynamic flow effects, which widen the sample bands migrating within the electric field, are eliminated while optimal heat removal from the thin buffer film is still possible and a sophisticated technique of harvesting of fractions remains available. Thus interval FFZE offers a gentle preparative method for purification of many kinds of charged molecular species such as proteins or dyes at very high resolution.  相似文献   

14.
Herein, a simple novel free‐flow electrophoresis (FFE) method was developed via introduction of organic solvent into the electrolyte system, increasing the solute solubility and throughput of the sample. As a proof of concept, phenazine‐1‐carboxylic acid (PCA) from Pseudomonas sp. M18 was selected as a model solute for the demonstration on feasibility of novel FFE method on account of its faint solubility in aqueous circumstance. In the developed method, the organic solvent was added into not only the sample buffer to improve the solubility of the solute, but also the background buffer to construct a uniform aqueous‐organic circumstance. These factors of organic solvent percentage and types as well as pH value of background buffer were investigated for the purification of PCA in the FFE device via CE. The experiments revealed that the percentage and the types of organic solvent exerted major influence on the purification of PCA. Under the optimized conditions (30 mM phosphate buffer in 60:40 (v/v) water‐methanol at an apparent pH 7.0, 3.26 mL/min background flux, 10‐min residence time of injected sample, and 400 V), PCA could be continuously purified from its impurities. The flux of sample injection was 10.05 μL/min, and the recovery was up to 93.7%. An 11.9‐fold improvement of throughput was found with a carrier buffer containing 40% (v/v) methanol, compared with the pure aqueous phase. The developed procedure is of evident significance for the purification of weak polarity solute via FFE.  相似文献   

15.
Isolated metaphase chromosomes of several fibroblastoid cell lines (Chinese hamster, Chinese hamster x human hybrid) were subjected to free flow electrophoresis (FFE) to study their electrophoretic mobility (EM). The morphology and stability of the chromosomes were unaffected by FFE as examined by cytogenetic methods and flow cytometry. The chromosomes of the complement all showed similar EM under most of the conditions applied. At neutral pH the EM of the chromosomes had the same sign as free DNA and about 2/3 of its magnitude. The variation of EM with buffer parameters such as ionic strength, valence of counterions, buffer capacity and dielectric constant of the solvent were investigated. Thermal denaturation increased the EM of the chromosomes by 20%. Partial denaturation might offer a possibility to separate or enrich large amounts of chromosomes by FFE.  相似文献   

16.
Free‐flow electrophoresis (FFE), a preparative free zone electrophoretic method, was used offline in conjunction with ultrahigh‐resolution FT/ion cyclotron resonance ‐MS to resolve the complexity of Suwannee River fulvic acid (SRFA). Before MS, the FFE separation conditions and the compatibility with ESI were optimized. The constituents in SRFA were effectively separated based on their charge states and sizes. The obtained mass spectra were compared by means of van Krevelen diagrams and the calculated aromaticity indices of the individual constituents were used to describe the distribution of aromatic/unsaturated structures across the FFE‐fractionated samples. The consolidated number of ions observed within the individual SRFA fractions were much higher than those of the bulk samples alone, demonstrating extensive ion suppression effects in bulk SRFA likely also operating in the analysis of complex biogeochemical mixtures in flow injection mode. The FFE approach allows for producing sizable amounts of sample from dilute solutions, which can be easily fractionated into dozens of individual samples with the possibility of further in‐depth characterization.  相似文献   

17.
We have 3D printed and fabricated micro free-flow electrophoresis (µFFE) devices in acrylonitrile butadiene styrene (ABS) that exhibit minimal surface adsorption without requiring additional surface coatings or specialized buffer additives. 2D, nano LC–micro free flow electrophoresis (2D nLC × µFFE) separations were used to assess both spatial and temporal broadening as peaks eluted through the separation channel. Minimal broadening due to wall adsorption was observed in either the spatial or temporal dimensions during separations of rhodamine 110, rhodamine 123, and fluorescein. Surface adsorption was observed in separations of Chromeo P503 labeled myoglobin and cytochrome c but was significantly reduced compared to previously reported glass devices. Peak widths of < 30 s were observed for both proteins. For comparison, Chromeo P503 labeled myoglobin and cytochrome c adsorb strongly to the surface of glass µFFE devices resulting in peak widths >20 min. A 2D nLC × µFFE separation of a Chromeo P503 labeled tryptic digest of BSA was performed to demonstrate the high peak capacity possible due to the low surface adsorption in the 3D printed ABS devices, even in the absence of surface coatings or buffer additives.  相似文献   

18.
We report on label-free monitoring of microfluidic free-flow electrophoresis (μFFE) separations in real-time using a custom built high speed deep UV laser scanner. In combination with a novel layout realized in fused silica (FS) FFE chips the setup was successfully applied for continuous separations and detection of unlabeled analytes including native proteins by space-resolved intrinsic deep UV fluorescence scanning.  相似文献   

19.
韩彬  王平利  张丽华  屈锋  梁振  邓玉林  张玉奎 《色谱》2009,27(4):383-386
芯片自由流电泳对于来源稀少的重要生物样品的连续预分级和微制备具有重要的意义。本文在自由流芯片的微分离腔内,通过原位光引发聚合反应制备了聚丙烯酰胺整体材料,并进行了pH梯度的固定化,从而构建了基于固定化pH梯度整体(M-IPG)材料的芯片自由流等电聚焦模式(μFF-IEF)。利用该新型分离模式,实现了异硫氰酸荧光素(FITC)标记的最小等电点相差0.33的甘氨酸、脯氨酸和赖氨酸混合物的分离,且分离结果优于传统的μFF-IEF。实验结果表明,通过发展基于M-IPG材料的μFF-IEF模式,不仅可以避免在缓冲溶液中添加两性电解质对后续采用其他模式分离和质谱鉴定的干扰,而且可以获得较高的分离和富集能力,有望在微量样品的连续分离和制备方面发挥重要作用。  相似文献   

20.
This paper describes a novel free‐flow electrophoresis (FFE), which is joined with gratis gravity, gas cushion injector (GCI) and self‐balance collector instead of multiple channel pump, for the purpose of preparative purification. The FFE was evaluated by systemic experiments. The results manifest that (i) even though one‐channel peristaltic pump is used for the driving of background buffer, there is still stable flow in the FFE chamber; (ii) the stable flow is induced by the gravity‐induced pressure due to the difference of buffer surfaces in the GCI and self‐balance collector; (iii) the pulse flow of background buffer induced by the peristaltic pump is greatly reduced by the GCI with good compressibility of included air; (iv) the FFE can be well used for zone electrophoretic separation of amino acids; (v) up to 20 inlets simultaneous sample injection and up to five to tenfold condensation of amino acid can be achieved by combining the FFE device with the method of moving reaction boundary. To the best of authors' knowledge, FFE has not been used for such separation and condensation of amino acids. The relevant results achieved in the paper have evident significance for the development of preparative FFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号