首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the four isomers of the 360° rotation cycle, but rotation of the rotors is hindered in the fourth isomer. Kinetic studies of both motor and rotor functions of the two new compounds are given, using (1)H NMR, 2D-EXSY NMR, and UV-vis spectroscopy. In addition, we present the development of a new method for introducing a range of aryl substituents at the α-carbon of precursors for molecular motors. The present study shows how the molecular system can be photochemically switched between a state of free rotor rotation and a state of hindered rotation and reveals the dynamics of coupled rotary systems.  相似文献   

2.
Crankshaft motion has been proposed in the solid state for molecular fragments consisting of three or more rotors linked by single bonds, whereby the two terminal rotors are static and the internal rotors experience circular motion. Bis-[tri-(3,5-di-tert-butyl)phenylmethyl]-peroxide 2 was tested as a model in search of crankshaft motion at the molecular level. In the case of peroxide 2, the bulky trityl groups may be viewed as the external static rotors, while the two peroxide oxygens can undergo the sought after internal rotation. Evidence for this process in the case of peroxide 2 was obtained from conformational dynamics determined by variable-temperature (13)C and (1)H NMR between 190 and 375 K in toluene-d(8). Detailed spectral assignments for the interpretation of two coalescence processes were based on a correlation between NMR spectra obtained in solution at low temperature, in the solid state by (13)C CPMAS NMR, and by GIAO calculations based on a B3LYP/6-31G structure of 2 obtained from its X-ray coordinates as the input. Evidence supporting crankshaft rotation rather than slippage of the trityl groups was obtained from molecular mechanics calculations.  相似文献   

3.
We have developed a simple convergent procedure for the synthesis of molecular rotors consisting of a central aromatic group coupled with two axially positioned ethynyltriptycenes. Molecular rotors with 1,4-phenylene (1), 1,4'-1,1'-biphenylene (2), 9,10-anthracenylene (3), and 2,7-pyrenylene (4) groups were prepared by Pd(0)-catalyzed coupling of ethynyl triptycenes with the corresponding dibromoarenes. Although compounds 1-4 were not expected to have free rotation in the solid state, the rotational potentials of 1 and 3 were analyzed by semiempirical methods and the crystal packing of 1 was analyzed to design the structures most likely to yield a functional rotor in the solid state. Semiempirical PM3 calculations predict compounds 1, 2, and 4 to have frictionless internal rotation even at temperatures as low as 25 K, while compound 3 is expected to have a barrier of ca. 4 kcal/mol.  相似文献   

4.
Fluorescent molecular rotors have been used for measurements of local mobility on molecular length scales, for example to determine viscosity, and for the visualization of contact between two surfaces. In the present work, we deepen our insight into the excited-state deactivation kinetics and mechanics of dicyanodihydrofuran-based molecular rotors. We extend the scope of the use of this class of rotors for contact sensing with a red-shifted member of the family. This allows for contact detection with a range of excitation wavelengths up to ∼600 nm. Steady-state fluorescence shows that the fluorescence quantum yield of these rotors depends not only on the rigidity of their environment, but – under certain conditions – also on its polarity. While excited state decay via rotation about the exocyclic double bond is rapid in nonpolar solvents and twisting of a single bond allows for fast decay in polar solvents, the barriers for both processes are significant in solvents of intermediate polarity. This effect may also occur in other molecular rotors, and it should be considered when applying such molecules as local mobility probes.  相似文献   

5.
In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states.  相似文献   

6.
ESR results show that the radical cation formed from ethylene oxide in the solid state is the ring-opened 2-oxa-trimethylene cation with a symmetrical (C) planar structure similar to that of the isoelectronic allyl radical. In contrast, the trimethylene oxide radical cation retains the ring structure of the parent molecule and its ESR parameters are characteristic of an oxygen-centred species.  相似文献   

7.
para‐Phenylene‐bridged spirobi(triarylamine) dimer 2 , in which π conjugation through four redox‐active triarylamine subunits is partially segregated by the unique perpendicular conformation, was prepared and characterized by structural, electrochemical, and spectroscopic methods. Quantum chemical calculations (DFT and CASSCF) predicted that the frontier molecular orbitals of 2 are virtually fourfold degenerate, so that the oxidized states of 2 can give intriguing electronic and magnetic properties. In fact, the continuous‐wave ESR spectroscopy of radical cation 2 .+ showed that the unpaired electron was trapped in the inner two redox‐active dianisylamine subunits, and moreover was fully delocalized over them. Magnetic susceptibility measurements and pulsed ESR spectroscopy of the isolated salts of 2 , which can be prepared by treatment with SbCl5, revealed that the generated tetracation 2 4+ decomposed mainly into a mixture of 1) a decomposed tetra(radical cation) consisting of a tri(radical cation) moiety and a trianisylamine radical cation moiety (≈75 %) and 2) a diamagnetic quinoid dication in a tetraanisyl‐p‐phenylendiamine moiety and two trianisylamine radical cation moieties (≈25 %). Furthermore, the spin‐quartet state of the tri(radical cation) moiety in the decomposed tetra(radical cation) was found to be in the ground state lying 30 cal mol?1 below the competing spin‐doublet state.  相似文献   

8.
Abstract— –By e.s.r. we have studied the photoexcitation of an aromatic amine to its triplet state at 77°K, its photoionization to a radical cation and the simultaneous formation of solvent radicals proceeding from the photosensitization of the organic glassy matrix. In the case of methanol and ethanol matrix we observe approximately one solvent radical per solute radical cation. In the case of isopropanol and methyltetrahydrofuran we find respectively three and two solvent radicals per solute radical cation. The results suggest two possible processes of photosensitization. By successive absorption of two photons, the amine reaches an excited triplet state which is able either to dissociate giving one electron and one cation radical or to transfer its energy to the solvent, this last being decomposed. It is assumed that in the case of methanol and ethanol, the radicals from the solvent are only formed by reaction on the matrix by the released electron, whereas in the case of isopropanol and methyltetrahydrofuran, the second process is prevalent or exclusive.  相似文献   

9.
Efficient emission from various donor-acceptor quinolines with an ethynyl linkage (PnQ), which are known as efficient electrogenerated chemiluminescent molecules, was observed with time-resolved fluorescence measurement during the pulse radiolysis in benzene. On the basis of the transient absorption and emission measurements, and steady-state measurements, the formation of PnQ in the singlet excited state can be interpreted by charge recombination between the PnQ radical cation and the PnQ radical anion which are generated initially from the radiolytic reaction in benzene. The strong electronic coupling between the donor and acceptor through conjugation is responsible for the efficient emission during the pulse radiolysis of PnQ in benzene. It is suggested that the positive and negative charges are localized on the donor and acceptor moieties in the radical cation and anion, respectively. This mechanism is reasonably explained by the relationship between the annihilation enthalpy changes and singlet excitation energies of PnQ. The formation of the intramolecular charge transfer state is assumed for PnQ in the singlet excited state with a strong electron donating substituent. The emission from PnQ is suggested to originate from PnQ in the singlet excited state formed from the charge recombination between the PnQ radical cation and the PnQ radical anion during the pulse radiolysis. This is strong evidence for the efficient electrogenerated chemiluminescence of PnQ.  相似文献   

10.
On direct photoexcitation, subpicosecond time-resolved absorption spectroscopy revealed that the 1B(u)-type singlet excited state of all-trans-lycopene in chloroform was about seven times more efficient than all-trans-beta-carotene in generating the radical cation. The time constant of radical cation generation from the 1B(u)-type state was found to be approximately 0.14 ps, a value that was comparable for the two carotenoids. On anthracene-sensitized triplet excitation, radical cation generation was found to be much less efficient for lycopene than for beta-carotene. A slow rising phase (20-30 micros) in the bleaching of ground-state absorption was common for both lycopene and beta-carotene in chloroform and was ascribed to an efficient secondary reaction with a solvent radical leading to the formation of carotenoid radical cations. The reverse ordering in the tendency of the excited states of different multiplicities for the two carotenoids to generate radical cations is discussed in relation to the two carotenoids as scavengers of free radicals.  相似文献   

11.
Density Functional Theory (DFT) studies on the ground states (2A'2) of NO3 radical and on the ground state (1A1') and the first triplet state (3E") of NO3 cation provide an unambiguous prediction about their geometrical structure-, the ground states of both NO3 radical and NO3 cation have D3h symmetry and the geometrical configuration of the first triplet state 3E" of NO3 cation has C2v symmetry. It is shown that as far as the ionization energy calculations on NO, radical are concerned, the results are only slightly different, no mater that gradient corrections of the exchange-correlation energy are included during self-consistent iterations or they are included as perturbations after the self-consistent iterations.  相似文献   

12.
The ring-opening reactions of the radical cations of hexamethyl Dewar benzene (1) and Dewar benzene have been studied using density functional theory (DFT) and complete active-space self-consistent field (CASSCF) calculations. Compound 1 is known to undergo photoinitiated ring opening by a radical cation chain mechanism, termed "quantum amplified isomerization" (QAI), which is due to the high quantum yield. Why QAI is efficient for 1 but not other reactions is explained computationally. Two radical cation minima of 1 and transition states located near avoided crossings are identified. The state crossings are characterized by conical intersections corresponding to degeneracy between doublet surfaces. Ring opening occurs by formation of the radical cation followed by a decrease in the flap dihedral angle. A rate-limiting Cs transition state leads to a second stable radical cation with an elongated transannular C-C bond and an increased flap dihedral. This structure proceeds through a conrotatory-like pathway of Cs symmetry to give the benzene radical cation. The role of electron transfer was investigated by evaluating oxidation of various systems using adiabatic ionization energies and electron affinities calculated from neutral and cation geometries. Electron-transfer theory was applied to 1 to investigate the limiting effects of back-electron transfer as it is related to the unusual stability of the two radical cations. Expected changes in optical properties between reactants and products of Dewar benzene compounds and other systems known to undergo QAI were characterized by computing frequency-dependent indices of refraction from isotropic polarizabilities. In particular, the reaction of 1 shows greater contrast in index of refraction than that of the Dewar benzene parent system.  相似文献   

13.
Molecular motion in the solid state is typically precluded by the highly dense environment, and only molecules with a limited range of sizes show such dynamics. Here, we demonstrate the solid-state rotational motion of two giant molecules, i.e., triptycene and pentiptycene, by encapsulating a bulky N-heterocyclic carbene (NHC) Au(I) complex in the crystalline media. To date, triptycene is the largest molecule (surface area: 245 Å2; volume: 219 Å3) for which rotation has been reported in the solid state, with the largest rotational diameter among reported solid-state molecular rotors (9.5 Å). However, the pentiptycene rotator that is the subject of this study (surface area: 392 Å2; volume: 361 Å3; rotational diameter: 13.0 Å) surpasses this record. Single-crystal X-ray diffraction analyses of both the developed rotors revealed that these possess sufficient free volume around the rotator. The molecular motion in the solid state was confirmed using variable-temperature solid-state 2H spin-echo NMR studies. The triptycene rotor exhibited three-fold rotation, while temperature-dependent changes of the rotational angle were observed for the pentiptycene rotor.  相似文献   

14.
碘鎓盐/胺复合体系,用作自由基光敏聚合的引发剂具有良好的效果[1],但是关于碘鎓盐和胺相互作用产生有引发活性的自由基的光化学反应机制尚不清楚。  相似文献   

15.
UMNDO reaction path calculations for trapping of the ethylene-cation radical with ground state oxygen suggest that formation of a dioxetane radical cation proceeds through the intermediacy of a peroxycation radical. The predicted enthalpy of activation (ΔH? = 13.8 kcal/mol) is consistent with rapid trapping of olefinic cation radicals by triplet oxygen at room temperature.  相似文献   

16.
Dibenzo[a,e]pentalene (DBP) is a non-alternant conjugated hydrocarbon with antiaromatic character and ambipolar electrochemical behavior. Upon both reduction and oxidation, it becomes aromatic. We herein study the chemical oxidation and reduction of a planar DBP derivative and a bent DBP-phane. The molecular structures of its planar dication, cation radical and anion radical in the solid state demonstrate the gained aromaticity through bond length equalization, which is supported by nucleus independent chemical shift-calculations. EPR spectra on the cation radical confirm the spin delocalization over the DBP framework. A similar delocalization was not possible in the reduced bent DBP-phane, which stabilized itself by proton abstraction from a solvent molecule upon reduction. This is the first report on structures of a DBP cation radical and dication in the solid state and of a reduced bent DBP derivative. Our study provides valuable insight into the charged species of DBP for its application as semiconductor.  相似文献   

17.
The photodissociation of p-xylene at 266 nm in n-heptane and acetonitrile has been studied with use of nanosecond fluorescence and absorption spectroscopy. The p-methylbenzyl radical was identified in n-heptane and acetonitrile by its fluorescence, which was induced by excitation at 308 nm. The p-xylene radical cation was observed in acetonitrile by its absorption. In n-heptane, the decay rate of the S(1) state of p-xylene ((3.2 +/- 0.2) x 10(7) s(-1)) is equal to the growth rate of the p-methylbenzyl radical ((2.7 +/- 0.4) x 10(7) s(-1)), showing that the molecule dissociates via the S(1) state into the radical by C-H bond homolysis (quantum efficiency approximately 5.0 x 10(-3)). In acetonitrile, the formation of the p-xylene radical cation requires two 266 nm photons, and the decay rate of the radical cation ((1.6 +/- 0.2) x 10(6) s(-1)) equals the growth rate of the p-methylbenzyl radical ((2.0 +/- 0.2) x 10(6) s(-1)). This shows that the radical cation dissociates into the radical by deprotonation (quantum efficiency approximately 8.9 x 10(-2)).  相似文献   

18.
Photochemical reactions of N-vinylcarbazole (VCZ) in the binary solvent of benzonitrile (?CN) and nitrobenzene (?NO2) were investigated. Both solvent and oxygen effects on the final products were examined. Benzonitrile and nitrobenzene behaved differently in the photochemical reaction of VCZ. At higher concentrations of benzonitrile in the aerated system, cyclodimerization was favored and it was inhibited by a cation scavenger and retarded by a radical scavenger. Polymerization occurred in the deaerated system and was inhibited by a radical scavenger and not by a cation scavenger. Using picosecond laser photolysis it was concluded that cyclodimerization occurs through the diffusion-controlled encounter collision of the excited singlet state of VCZ with an oxygen molecule, producing the VCZ cation radical and oxygen anion radical, and that this oxygen anion radical plays a very important role in the cyclodimerization of VCZ. It was also suggested that radical polymerization in the deaerated system is initiated by the excited triplet state of VCZ. On the other hand, at higher concentrations of nitrobenzene, only cationic polymerization took place irrespective of the presence of oxygen, and it was suggested that a contact charge-transfer complex is produced by the mixing of VCZ with ?NO2 producing VCZ cation radical and NO2 anion radical by an excited-state electron transfer.  相似文献   

19.
The overall rotation and internal rotation of p-cresol (4-methyl-phenol) has been studied by comparison of the microwave spectrum with accurate ab initio calculations using the principal axis method in the electronic ground state. Both internal rotations, the torsions of the methyl and the hydroxyl groups relative to the aromatic ring, have been investigated. The internal rotation of the hydroxyl group can be approximately described as the motion of a symmetrical rotor on an asymmetric frame. For the methyl group it has been found that the potential barrier hindering its internal rotation is very small with the first two nonvanishing Fourier coefficients of the potential V(3) and V(6) in the same order of magnitude. Different splittings of b-type transitions for the A and E species of the methyl torsion indicate a top-top interaction between both internal rotors through the benzene ring. An effective coupling potential for the top-top interaction could be estimated. The hindering barriers of the hydroxyl and methyl rotation have been calculated using second-order Moller-Plesset perturbation theory and the approximate coupled-cluster singles-and-doubles model (CC2) in the ground state and using CC2 and the algebraic diagrammatic construction through second order in the first electronically excited state. The results are in excellent agreement with the experimental values.  相似文献   

20.
We report a theoretical account on the static and dynamic aspects of the Jahn-Teller (JT) and pseudo-Jahn-Teller (PJT) interactions in the ground and first excited electronic states of the ethane radical cation. The findings are compared with the experimental photoionization spectrum of ethane. The present theoretical approach is based on a model diabatic Hamiltonian and with the parameters derived from ab initio calculations. The optimized geometry of ethane in its electronic ground state (1A1g) revealed an equilibrium staggered conformation belonging to the D3d symmetry point group. At the vertical configuration, the ethane radical cation belongs to this symmetry point group. The ground and low-lying electronic states of this radical cation are of 2Eg, 2A1g, 2Eu, and 2A2u symmetries. Elementary symmetry selection rule suggests that the degenerate electronic states of the radical cation are prone to the JT distortion when perturbed along the degenerate vibrational modes of eg symmetry. The 2A1g state is estimated to be approximately 0.345 eV above the 2Eg state and approximately 2.405 eV below the 2Eu state at the vertical configuration. The symmetry selection rule also suggests PJT crossings of the 2A1g and the 2Eg electronic states of the radical cation along the vibrational modes of eg symmetry and such crossings appear to be energetically favorable also. The irregular vibrational progressions, with numerous shoulders and small peaks, observed below 12.55 eV in the experimental recording are manifestations of the dynamic (E x e)-JT effect. Our findings revealed that the PJT activity of the degenerate vibrational modes is particularly strong in the 2Eg-2A1g electronic manifold which leads to a broad and diffuse structure of the observed photoelectron band.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号