首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dev S  Iyer KS  Raston CL 《Lab on a chip》2011,11(19):3214-3217
We present a simple method involving a rotating tube processor to fabricate ultrafine crystalline drug nanoparticles under microfluidic continuous flow with precise control over particle size, with significantly enhanced dissolution of the drug.  相似文献   

2.
Biochemical solutions have a wide range of hydrophilicity (contact angle and surface tension) and viscosity. A critical challenge is that microfluidic systems typically need expensive or complex pumps to control the various parallel biochemical streams. In this study, without using any pumps, we present a simple scheme that controls the ratio of the volumetric flow rate (VFR) of the parallel streams that have highly different hydrophilicity and viscosity. We accomplish this process by using capillarity to drive and merge two streams, and by regulating relative flow resistance to control the VFR ratio. Our results will significantly simplify the control of the VFR ratio for the various biochemical solutions that are used in microfluidic applications.  相似文献   

3.
Hung LH  Choi KM  Tseng WY  Tan YC  Shea KJ  Lee AP 《Lab on a chip》2006,6(2):174-178
A multifunctional and high-efficiency microfluidic device for droplet generation and fusion is presented. Through unique design of the micro-channels, the device is able to alternately generate droplets, generating droplet ratios ranging from 1 ratio 5 to 5 ratio 1, and fuse droplets, enabling precise chemical reactions in several picoliters on a single chip. The controlled fusion is managed by passive control based on the channel geometry and liquid phase flow. The synthesis of CdS nanoparticles utilizing each fused droplet as a microreactor for rapid and efficient mixing of reagents is demonstrated in this paper. Following alternating droplet generation, the channel geometry allows the exclusive fusion of alternate droplets with concomitant rapid mixing and produces supersaturated solution of Cd2+ and S2- ions to form CdS nanoparticles in each fused droplet. The spectroscopic properties of the CdS nanoparticles produced by this method are compared with CdS prepared by bulk mixing.  相似文献   

4.
This paper characterizes the conditions required to form nanoliter-sized droplets (plugs) of viscous aqueous reagents in flows of immiscible carrier fluid within microfluidic channels. For both non-viscous (viscosity of 2.0 mPa s) and viscous (viscosity of 18 mPa s) aqueous solutions, plugs formed reliably in a flow of water-immiscible carrier fluid for Capillary number less than 0.01, although plugs were able to form at higher Capillary numbers at lower ratios of the aqueous phase flow rate to the flow rate of the carrier fluid (in all the experiments performed, the Reynolds number was less than 1). The paper also shows that combining viscous and non-viscous reagents can enhance mixing in droplets moving through straight microchannels by providing a nearly ideal initial distribution of reagents within each droplet. The study should facilitate the use of this droplet-based microfluidic platform for investigation of protein crystallization, kinetics, and assays.  相似文献   

5.
6.
Recently, a series of slanted wells on the floor of a microfluidic channel were experimentally shown to successfully induce off-axis transport and mixing of two confluent streams when operating under electroosmotic (EO) flow. This paper will further explore, through numerical simulations, the parameters that affect off-axis transport under EO flow with an emphasis on optimizing the mixing rate of (a). two confluent streams in steady-state or (b). the transient scenario of two confluent plugs of material, which simulates mixing after an injection. For the steady-state scenario, the degree of mixing was determined to increase by changing any of the following parameters: (1). increasing the well depth, (2). decreasing the well angle relative to the axis of the channel, and (3). increasing the EO mobility of the well walls relative to the mobility of the main channel. Also, it will be shown that folding of the fluid can occur when the well angle is sufficiently reduced and/or when the EO mobility of the wells is increased relative to the channel. The optimum configuration for the transient problem of mixing two confluent plugs includes shallow wells to minimize the well residence time, and an increased EO mobility of the well walls relative to the main channel as well as small well angles to maximize off-axis transport. The final design reported here for the transient study reduces the standard deviation of the concentration across the channel by 72% while only increasing the axial dispersion of the injected plug by 8.6 % when compared to a plug injected into a channel with no wells present. These results indicate that a series of slanted wells on the wall of a microchannel provides a means for controlling and achieving a high degree of off-axis transport and mixing in a passive manner for micro total analysis system (microTAS) devices that are driven by electroosmosis.  相似文献   

7.
Z Zhu  W Zhang  X Leng  M Zhang  Z Guan  J Lu  CJ Yang 《Lab on a chip》2012,12(20):3907-3913
Genetic alternations can serve as highly specific biomarkers to distinguish fatal bacteria or cancer cells from their normal counterparts. However, these mutations normally exist in very rare amount in the presence of a large excess of non-mutated analogs. Taking the notorious pathogen E. coli O157:H7 as the target analyte, we have developed an agarose droplet-based microfluidic ePCR method for highly sensitive, specific and quantitative detection of rare pathogens in the high background of normal bacteria. Massively parallel singleplex and multiplex PCR at the single-cell level in agarose droplets have been successfully established. Moreover, we challenged the system with rare pathogen detection and realized the sensitive and quantitative analysis of a single E. coli O157:H7 cell in the high background of 100?000 excess normal K12 cells. For the first time, we demonstrated rare pathogen detection through agarose droplet microfluidic ePCR. Such a multiplex single-cell agarose droplet amplification method enables ultra-high throughput and multi-parameter genetic analysis of large population of cells at the single-cell level to uncover the stochastic variations in biological systems.  相似文献   

8.
The effects of interfacial viscosity on the droplet dynamics in simple shear flow and planar hyperbolic flow are investigated by numerical simulation with diffuse interface model. The change of interfacial viscosity results in an apparent slip of interfacial velocity. Interfacial viscosity has been found to have different influence on droplet deformation and coalescence. Smaller interfacial viscosity can stabilize droplet shape in flow field, while larger interfacial viscosity will increase droplet deformation, or even make droplet breakup faster. Different behavior is found in droplet coalescence, where smaller interfacial viscosity speeds up film drainage and droplet coalescence, but larger interfacial viscosity postpones the film drainage process. This is due to the change of film shape from flat‐like for smaller interfacial viscosity to dimple‐like for larger interfacial viscosity. The film drainage time still scales as Ca0 at smaller capillary number (Ca), and Ca1.5 at higher capillary number when the interfacial viscosity changes. The interfacial viscosity only affects the transition between these limiting scaling relationships. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1505–1514, 2008  相似文献   

9.
A novel microfluidic droplet generator is proposed, which can control the droplet size through turning an integrated micrometer head with ease, and the size of the produced micro-droplet can be automatically and real-time monitored by an open-sourced software and off-the-shelf hardware.  相似文献   

10.
Analysis of droplet contents is a key function involved in droplet-based microfluidic systems. Direct electrochemical detection of droplet contents suffers problems such as relatively poor repeatability, interference of capacitive current and relatively poor detectability. This paper presents a novel hybrid polydimethylsiloxane-glass chip for highly sensitive and reproducible amperometric detection of droplet contents. By wettability-patterning of the channel surface of the hybrid chip, water in oil droplets generated in the upstream part of the central channel can be switched to a two-phase vertical laminar flow (i.e., a continuous oil stream flowing atop a continuous aqueous stream) in the downstream part of the channel. The vertical laminar flow keeps the analyte in the underneath-flowing aqueous stream in direct contact with the sensing electrodes located on the bottom surface of the channel. Therefore, steady-state current signals with high sensitivity (1.2 A M−1 cm−2 for H2O2), low limit of detection (0.12 μM, S/N = 2), and good reproducibility (RSD 1.1% at 0.3 mM H2O2) were obtained. The methods for patterning of the inner channel surface are presented, and the behaviors of the microchip in flow profile switching and amperometric detection are discussed. The application of the developed microchip to enzyme kinetics study is also demonstrated.  相似文献   

11.
An automated proteolytic digestion bioreactor and droplet deposition system was constructed with a plastic microfluidic device for off-line interfacing to matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The microfluidic chips were fabricated in poly(methyl methacrylate) (PMMA), using a micromilling machine and incorporated a bioreactor, which was 100 microm wide, 100 microm deep, and possessed a 4 cm effective channel length (400 nL volume). The chip was operated by pressure-driven flow and mounted on a robotic fraction collector system. The PMMA bioreactor contained surface immobilized trypsin, which was covalently attached to the UV-modified PMMA surface using coupling reagents N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and hydroxysulfosuccinimide (sulfo-NHS). The digested peptides were mixed with a MALDI matrix on-chip and deposited as discrete spots on MALDI targets. The bioreactor provided efficient digestion of a test protein, cytochrome c, at a flow rate of 1 microL/min, producing a reaction time of approximately 24 s to give adequate sequence coverage for protein identification. Other proteins were also evaluated using this solid-phase bioreactor. The efficiency of digestion was evaluated by monitoring the sequence coverage, which was 64%, 35%, 58%, and 47% for cytochrome c, bovine serum albumin (BSA), myoglobin, and phosphorylase b, respectively.  相似文献   

12.
A p-benzenedithiolate (BDT) molecule covalently bonded between two gold electrodes has become one of the model systems utilized for investigating molecular transport junctions. The plethora of papers published on the BDT system has led to varying conclusions with respect to both the mechanism and the magnitude of transport. Conductance variations have been attributed to difficulty in calculating charge transfer to the molecule, inability to locate the Fermi energy accurately, geometric dispersion, and stochastic switching. Here we compare results obtained using two transport codes, TRANSIESTA-C and HUCKEL-IV, to show that upon Au-S bond lengthening, the calculated low bias conductance initially increases by up to a factor of 30. This increase in highest occupied molecular orbital (HOMO) mediated conductance is attributed to charging of the terminal sulfur atom and a corresponding decrease in the energy gap between the Fermi level and the HOMO. Addition of a single Au atom to each terminal of the extended BDT molecule is shown to add four molecular states near the Fermi energy, which may explain the varying results reported in the literature.  相似文献   

13.
Ya Jin  Guo-An Luo 《Electrophoresis》2003,24(7-8):1242-1252
A numerical study is presented for the electroosmotic flow (EOF) at the cross region in microfluidic chips. The distributions of the electric potential due to the electric double layer (EDL) and the external electric field are discussed and the calculation of the latter can give rough speculations on the flow tendencies in the channels during various operation modes. Simplification of the two-dimensional Navier-Stokes (N-S) equations is obtained by focusing on the solution of interior flows, and the numerical calculation results show good agreement with the experimental images. The sample leakage to the separation channel during the "float" sampling proved to be caused not only by the sample diffusion, but also by the weak extension of the sampling electric field. It is also verified that with suitable voltage configuration, the "pinch" sampling mode is better than the "float" mode in sample plug control.  相似文献   

14.
The water droplets in the process of electrostatic coalescence are important when studying electrohydrodynamics. In the present study, the electric field and flow field are coupled through the phase field method based on the Cahn–Hilliard formulation. A numerical simulation model of single droplet deformation under the coupling field was established. It simulated the deformation behavior of the movement of a droplet in the continuous phase and took the impact of droplet deformation into consideration which is affected by two-phase flow velocity, electric field strength, the droplet diameter, and the interfacial tension. The results indicated that under the single action of the flow field, when the flow velocity was lower, the droplet diameter was greater as was the droplet deformation degree. When the flow velocity was increased, the droplet deformation degree of a small-diameter droplet was at its maximum size, the large-diameter droplet had a smaller deformation degree, and the middle-diameter droplet was at a minimum deformation degree. When the flow velocity was further increased, the droplet diameter was smaller, and the droplet deformation degree was greater. Under the coupled effect of the electric field and flow field, the two-phase flow velocity and the electric field strength were greater, and the degree of droplet deformation was greater. While the droplet diameter and interfacial tension were smaller, the degree of droplet deformation was greater. Droplet deformation degree increased along with the two-phase flow velocity. The research results provided a theoretical basis for gas–liquid separation with electrostatic coalescence technology.  相似文献   

15.
Shen H  Fang Q  Fang ZL 《Lab on a chip》2006,6(10):1387-1389
A microfluidic chip-based sequential injection system with trapped droplet liquid-liquid extraction preconcentration and chemiluminescence detection was developed for achieving high sensitivity with low reagent and sample consumption. The microfabricated glass lab-chip had a 35 mm long extraction channel, with 134 shrunken opening rectangular recesses (L 100 microm x W 50 microm x D 25 microm) arrayed within a 1 mm length on both sides of the middle section of the channel. Ketonic peroxyoxalate ester solution was filled in the recesses forming organic droplets, and keeping the aqueous sample solution flowing continuously in the extraction channel; analytes were transferred from the aqueous phase into the droplets through molecular diffusion. After liquid-liquid extraction preconcentration, catalyst and hydrogen peroxide solutions were introduced into the channel, and mixed with analytes and peroxyoxalate ester to emit chemiluminescence light. The performance of the system was tested using butyl rhodamine B, yielding a precision of 4% RSD (n = 5) and a detection limit of 10(-9) M. Within a 17 min analytical cycle, the consumptions of sample and peroxyoxalate solutions were 2.7 microL and 160 nL, respectively.  相似文献   

16.
The coalescence behavior of droplets in an electric field belongs to the important research contents of electrohydrodynamics. Based on the phase field method of the Cahn–Hilliard equation, the electric field and the flow field are coupled to establish the numerical model of twin droplet coalescence in a coupled field. The effects of flow rate, electric field strength, droplet diameter, and interfacial tension on the coalescence behavior of droplets during the coalescence process were investigated. The results show that the dynamic behavior of the droplets is divided into coalescence, after coalescence rupture, and no coalescence under the coupling of electric field and flow field. The proper increase of the electric field strength will accelerate the coalescence of the droplets, and the high electric field strength causes the droplets to burst after coalescence. Excessive flow rates make droplets less prone to coalescence. Under the coupling field, the larger the droplet interface tension, the smaller the droplet diameter, the smaller the flow rate, and the shorter the droplet coalescence time. The results provide a theoretical basis for the application of electrostatic coalescence in gas–liquid separation technology.  相似文献   

17.
Droplet microfluidics performed in poly(methyl methacrylate) (PMMA) microfluidic devices resulted in significant wall wetting by water droplets formed in a liquid-liquid segmented flow when using a hydrophobic carrier fluid such as perfluorotripropylamine (FC-3283). This wall wetting led to water droplets with nonuniform sizes that were often trapped on the wall surfaces, leading to unstable and poorly controlled liquid-liquid segmented flow. To circumvent this problem, we developed a two-step procedure to hydrophobically modify the surfaces of PMMA and other thermoplastic materials commonly used to make microfluidic devices. The surface-modification route involved the introduction of hydroxyl groups by oxygen plasma treatment of the polymer surface followed by a solution-phase reaction with heptadecafluoro-1,1,2,2-tetrahydrodecyl trichlorosilane dissolved in fluorocarbon solvent FC-3283. This procedure was found to be useful for the modification of PMMA and other thermoplastic surfaces, including polycyclic olefin copolymer (COC) and polycarbonate (PC). Angle-resolved X-ray photoelectron spectroscopy indicated that the fluorination of these polymers took place with high surface selectivity. This procedure was used to modify the surface of a PMMA droplet microfluidic device (DMFD) and was shown to be useful in reducing the wetting problem during the generation of aqueous droplets in a perfluorotripropylamine (FC-3283) carrier fluid and could generate stable segmented flows for hours of operation. In the case of PMMA DMFD, oxygen plasma treatment was carried out after the PMMA cover plate was thermally fusion bonded to the PMMA microfluidic chip. Because the appended chemistry to the channel wall created a hydrophobic surface, it will accommodate the use of other carrier fluids that are hydrophobic as well, such as hexadecane or mineral oils.  相似文献   

18.
A hydrodynamic flow restrictor (HDR) that is used to combine electrokinetic and hydrodynamic flow streams has been fabricated in a microfluidic channel by laser micromachining. Combining electrokinetic and hydrodynamic flow streams is challenging in microfluidic devices, because the hydrodynamic flow often overpowers the electrokinetic flow, making it more difficult to use low electroosmotic flow in the electrokinetic portion of the system. The HDR has been incorporated into a capillary electrophoresis-mass spectrometry interface that provides continuous introduction of a make-up solution and negates the hydrodynamic backpressure in the capillary electrophoresis channel to the extent that low EOF can be utilized. Moreover, the hydrodynamic backpressure is sufficiently minimized to allow coatings that minimize EOF to be used in the electrokinetically driven channel. Such coatings are of great importance for the analysis of proteins and other biomolecules that adsorb to charged surfaces.  相似文献   

19.
We propose a strategy for optimizing distribution of flow in a microfluidic chamber for microreactor, lateral flow assay and immunocapture applications. It is aimed at maximizing flow throughput, while keeping footprint, cell thickness, and shear stress in the distribution channels at a minimum, and offering a uniform flow field along the whole analysis chamber. In order to minimize footprint, the traditional tree-like or "rhombus" design, in which distribution microchannels undergo a series of splittings into two subchannels with equal lengths and widths, was replaced by a design in which subchannel lengths are unequal, and widths are analytically adapted within the Hele-Shaw approximation, in order to keep the flow resistance uniform along all flow paths. The design was validated by hydrodynamic flow simulation using COMSOL finite element software. Simulations show that, if the channel is too narrow, the Hele-Shaw approximation loses accuracy, and the flow velocity in the chamber can fluctuate by up to 20%. We thus used COMSOL simulation to fine-tune the channel parameters, and obtained a fluctuation of flow velocity across the whole chamber below 10%. The design was then implemented into a PDMS device, and flow profiles were measured experimentally using particle tracking. Finally, we show that this system can be applied to cell sorting in self-assembling magnetic arrays, increasing flow throughput by a factor 100 as compared to earlier reported designs.  相似文献   

20.
Two simple and rugged designs for creating microfluidic sheath flow   总被引:1,自引:0,他引:1  
A simple design capable of 2-dimensional hydrodynamic focusing is proposed and successfully demonstrated. In the past, most microfluidic sheath flow systems have often only confined the sample solution on the sides, leaving the top and bottom of the sample stream in contact with the floor and ceiling of the channel. While relatively simple to build, these designs increase the risk of adsorption of sample components to the top and bottom of the channel. A few designs have been successful in completely sheathing the sample stream, but these typically require multiple sheath inputs and several alignment steps. In the designs presented here, full sheathing is accomplished using as few as one sheath input, which eliminates the need to carefully balance the flow of two or more sheath inlets. The design is easily manufactured using current microfabrication techniques. Furthermore, the sample and sheath fluid can be subsequently separated for recapture of the sample fluid or re-use of the sheath fluid. Designs were demonstrated in poly(dimethylsiloxane) (PDMS) using soft lithography and poly(methyl methacrylate) (PMMA) using micromilling and laser ablation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号