首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Herein we describe an algorithm for designing combinatorial peptide libraries for split-and-mix synthesis on solid support that are decodable by amino acid analysis (AAA) of the beads. AAA is a standard service analysis available in most biochemical laboratories, and it allows one to control the quality of the peptide on each bead, an important feature that is missing from most library decoding protocols. In the algorithm, each AA is assigned to two variable positions in the sequence grouped in a "unique pair". This arrangement limits sequence design because both the number of unique pairs U (setting the maximum number of variable AA) and the maximum number S of different AA per variable position depend on the peptide length N (U=N(N-1)/2), S=N-1). The method is therefore only suitable for focused libraries. An application example is shown for the selection of peptides with N-terminal proline or hydroxyproline catalyzing an aldol reaction from a combinatorial library of 65536 octapeptides. A simple enumeration program is available to help design combinatorial libraries decodable by amino acid analysis. The method applies to linear and cyclic peptides, can be used for nonnatural building blocks, including beta-amino acids, and should help to explore the vast chemistry of linear and cyclic peptide for catalysis and bioactivity.  相似文献   

2.
Noncanonical peptides occur frequently in Nature, and often display high bioactivity. However, the lack of tractable systems for the synthesis of diverse libraries of such peptides has thus far hampered their development as drugs. Genetic reprogramming techniques, in which noncanonical amino acids may be incorporated into peptides, have largely removed this limitation. This Concept article outlines the development of these techniques with an emphasis on drug discovery.  相似文献   

3.
Combinatorial chemistry has deeply impacted the drug discovery process by accelerating the synthesis and screening of large numbers of compounds having therapeutic and/or diagnostic potential. These techniques offer unique enhancement in the potential identification of new and/or therapeutic candidates. Our efforts over the past 10 years in the design and diversity-oriented synthesis of low molecular weight acyclic and heterocyclic combinatorial libraries derived from amino acids, peptides, and/or peptidomimetics are described. Employing a "toolbox" of various chemical transformations, including alkylation, oxidation, reduction, acylation, and the use of a variety of multifunctional reagents, the "libraries from libraries" concept has enabled the continued development of an ever-expanding, structurally varied series of organic chemical libraries.  相似文献   

4.
Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.  相似文献   

5.
Combinatorial libraries of non-biological polymers and drug-like peptides could in principle be synthesized from unnatural amino acids by exploiting the broad substrate specificity of the ribosome. The ribosomal synthesis of such libraries would allow rare functional molecules to be identified using technologies developed for the in vitro selection of peptides and proteins. Here, we use a reconstituted E. coli translation system to simultaneously re-assign 35 of the 61 sense codons to 12 unnatural amino acid analogues. This reprogrammed genetic code was used to direct the synthesis of a single peptide containing 10 different unnatural amino acids. This system is compatible with mRNA-display, enabling the synthesis of unnatural peptide libraries of 10(14) unique members for the in vitro selection of functional unnatural molecules. We also show that the chemical space sampled by these libraries can be expanded using mutant aminoacyl-tRNA synthetases for the incorporation of additional unnatural amino acids or by the specific posttranslational chemical derivitization of reactive groups with small molecules. This system represents a first step toward a platform for the synthesis by enzymatic tRNA aminoacylation and ribosomal translation of cyclic peptides comprised of unnatural amino acids that are similar to the nonribosomal peptides.  相似文献   

6.
N-methyl amino acids (N-Me AAs) are a common component of nonribosomal peptides (NRPs), a class of natural products from which many clinically important therapeutics are obtained. N-Me AAs confer peptides with increased conformational rigidity, membrane permeability, and protease resistance. Hence, these analogues are highly desirable building blocks in the ribosomal synthesis of unnatural peptide libraries, from which functional, NRP-like molecules may be identified. By supplementing a reconstituted Escherichia coli translation system with specifically aminoacylated total tRNA that has been chemically methylated, we have identified three N-Me AAs (N-Me Leu, N-Me Thr, and N-Me Val) that are efficiently incorporated into peptides by the ribosome. Moreover, we have demonstrated the synthesis of peptides containing up to three N-Me AAs, a number comparable to that found in many NRP drugs. With improved incorporation efficiency and translational fidelity, it may be possible to synthesize combinatorial libraries of peptides that contain multiple N-Me AAs. Such libraries could be subjected to in vitro selection methods to identify drug-like, high-affinity ligands for protein targets of interest.  相似文献   

7.
The binding properties of a peptidoglycan recognition protein are translated via combinatorial chemistry into short peptides. Non-adjacent histidine, tyrosine, and arginine residues in the protein’s binding cleft that associate specifically with the glycan moiety of a peptidoglycan substrate are incorporated into linear sequences creating a library of 27 candidate tripeptide reagents (three possible residues permutated across three positions). Upon electrospraying the peptide library and carbohydrate mixtures, some noncovalent complexes are observed. The binding efficiencies of the peptides vary according to their amino acid composition as well as the disaccharide linkage and carbohydrate ring-type. In addition to providing a charge-carrier for the carbohydrate, peptide reagents can also be used to differentiate carbohydrate isomers by ion mobility spectrometry. The utility of these peptide reagents as a means of enhancing ion mobility analysis of carbohydrates is illustrated by examining four glucose-containing disaccharide isomers, including a pair that is not resolved by ion mobility alone. The specificity and stoichiometry of the peptide–carbohydrate complexes are also investigated. Trihistidine demonstrates both suitable binding efficiency and successful resolution of disaccharides isomers, suggesting it may be a useful reagent in IMS analyses of carbohydrates.  相似文献   

8.
Combinatorial preparation and HTS of arrays of compounds have increased the speed of drug discovery. A strong impulse in this field has come by the introduction of the solid phase synthesis method that, through automation and miniaturization, has paved the way to the preparation of large collections of compounds in compact and trackable formats. Due to the well established synthetic procedures, peptides have been largely used to develop the basic concepts of combinatorial chemistry and peptide libraries are still successfully employed in screening programs. However, peptides generally do not fulfil the requirements of low conformational flexibility, stability and bioavailability needed for good drug candidates and peptide leads with high potency and selectivity are often made "druggable" by conversion to more stable structures with improved pharmacological profiles. Such an approach makes the screening of peptide libraries still a valuable tool for drug discovery. We propose here a panoramic review of the most common methods for the preparation and screening of peptide libraries and the most interesting findings of the last decade. We also report on a new approach we follow in our laboratory that is based on the use of "simplified" libraries composed by a minimum number of non-redundant amino acids for the assembly of short peptides. The choice of amino acids is dictated by diversity in lipophilicity, MW, charge and polarity. Newly identified active sequences are then modified by preparing new variants containing analogous amino acids, so that the chemical space occupied by the excluded residues can be explored. This approach offers the advantage of simplifying the synthesis and deconvolution of libraries and provides new active compounds with a molecular size similar to that of small molecules, to which they can be easily converted.  相似文献   

9.
An efficient strategy for the synthesis of large libraries of conformationally defined peptides is reported, using dynamic combinatorial chemistry as a tool to graft amino acid side chains on a well-ordered 3D (3-dimension) peptide backbone. Combining rationally designed scaffolds with combinatorial side chains selection represents an alternative method to access peptide libraries for structures that are not genetically encodable. This method would allow a breakthrough for the discovery of protein mimetic for unconventional targets for which little is known.  相似文献   

10.
Rational design and engineering of membrane-active peptides remains a largely unsatisfied goal. We have hypothesized that this is due, in part, to the fact that some membrane activities, such as permeabilization, are not dependent on specific amino acid sequences or specific three-dimensional peptide structures. Instead they depend on interfacial activity: the ability of a molecule to partition into the membrane-water interface and to alter the packing and organization of lipids. Here we test that idea by taking a nonclassical approach to biomolecular engineering and design of membrane-active peptides. A 16,384-member rational combinatorial peptide library, containing peptides of 9-15 amino acids in length, was screened for soluble members that permeabilize phospholipid membranes. A stringent, two-phase, high-throughput screen was used to identify 10 unique peptides that had potent membrane-permeabilizing activity but were also water soluble. These rare and uniquely active peptides do not share any particular sequence motif, peptide length, or net charge, but instead they share common compositional features, secondary structure, and core hydrophobicity. We show that they function by a common mechanism that depends mostly on interfacial activity and leads to transient pore formation. We demonstrate here that composition-space peptide libraries coupled with function-based high-throughput screens can lead to the discovery of diverse, soluble, and highly potent membrane-permeabilizing peptides.  相似文献   

11.
To meet the growing demands for the development of new molecular entities for discovering new drugs and materials, organic chemists have started looking for new concepts to supplement traditional approaches. In one such approach, the expertise gained over the years in the area of organic synthesis and the rational drug-design concepts are combined together to create "nature-like" and yet unnatural organic molecules that are expected to provide leads in discovering new molecules. Emulating the basic principles followed by nature to build its vast repertoire of biomolecules, organic chemists are developing many novel multifunctional building blocks. Sugar amino acids constitute an important class of such polyfunctional scaffolds where the carboxyl, amino and hydroxyl groups provide an excellent opportunity for organic chemists to create structural diversities akin to nature's molecular arsenal. Recent advances in the area of combinatorial chemistry give unprecedented technological support for rapid compilations of sugar amino acid-based libraries exploiting the diversities of carbohydrate molecules and well-developed solid-phase peptide synthesis methods. This review chronicles the development of sugar amino acids as a novel class of peptidomimetic building blocks and their applications in generating desired secondary structures in peptides as well as in creating mimics of natural biopolymers.  相似文献   

12.
Aptamers: molecular tools for analytical applications   总被引:3,自引:0,他引:3  
Aptamers are artificial nucleic acid ligands, specifically generated against certain targets, such as amino acids, drugs, proteins or other molecules. In nature they exist as a nucleic acid based genetic regulatory element called a riboswitch. For generation of artificial ligands, they are isolated from combinatorial libraries of synthetic nucleic acid by exponential enrichment, via an in vitro iterative process of adsorption, recovery and reamplification known as systematic evolution of ligands by exponential enrichment (SELEX). Thanks to their unique characteristics and chemical structure, aptamers offer themselves as ideal candidates for use in analytical devices and techniques. Recent progress in the aptamer selection and incorporation of aptamers into molecular beacon structures will ensure the application of aptamers for functional and quantitative proteomics and high-throughput screening for drug discovery, as well as in various analytical applications. The properties of aptamers as well as recent developments in improved, time-efficient methods for their selection and stabilization are outlined. The use of these powerful molecular tools for analysis and the advantages they offer over existing affinity biocomponents are discussed. Finally the evolving use of aptamers in specific analytical applications such as chromatography, ELISA-type assays, biosensors and affinity PCR as well as current avenues of research and future perspectives conclude this review.  相似文献   

13.
Despite the burgeoning interest in the various biological functions and consequent therapeutic potential of the vast number of oligosaccharides found in nature on glycoproteins and cell surfaces, the development of combinatorial carbohydrate chemistry has not progressed as rapidly as expected. The reason for this imbalance is rooted in the difficulty of oligosaccharide assembly and analysis that renders synthesis a rather cumbersome endeavor. Parallel approaches that generate series of analogous compounds rather than real libraries have therefore typically been used. Since generally low affinity is obtained for interactions between carbohydrate receptors and modified oligosaccharides designed as mimetics of natural carbohydrate ligands, glycopeptides have been explored as alternative mimics. Glycopeptides have been proven in many cases to be superior ligands with higher affinity for a receptor than the natural carbohydrate ligand. High-affinity glycopeptide ligands have been found for several types of receptors including the E-, P-, and L-selectins, toxins, glycohydrolases, bacterial adhesins, and the mannose-6-phosphate receptor. Furthermore, the assembly of glycopeptides is considerably more facile than that of oligosaccharides and the process can be adapted to combinatorial synthesis with either glycosylated amino acid building blocks or by direct glycosylation of peptide templates. The application of the split and combine approach using ladder synthesis has allowed the generation of very large numbers of compounds which could be analyzed and screened for binding of receptors on solid phase. This powerful technique can be used generally for the identification and analysis of the complex interaction between the carbohydrates and their receptors.  相似文献   

14.
The thiazole/oxazole-modified microcins (TOMMs) represent a burgeoning class of ribosomal natural products decorated with thiazoles and (methyl)oxazoles originating from cysteines, serines, and threonines. The ribosomal nature of TOMMs allows for the generation of derivative products from mutations in the amino acid sequence of the precursor peptide, which ultimately manifest in differing structures and, sometimes, biological functions. Employing a TOMM system for the purpose of creating new structures and functions via combinatorial biosynthesis requires processing machinery that can tolerate highly variable substrates. In this study, TOMM enzymatic promiscuity was assessed using a currently uncharacterized cluster in Bacillus sp. Al Hakam. As determined by Fourier transform tandem mass spectrometry (FT-MS/MS), azole rings were formed in both a regio- and chemoselective fashion. Cognate and noncognate precursor peptides were modified in an overall C- to N-terminal directionality, which to date is unique among characterized ribosomal natural products. Studies focused on the inherent promiscuity of the biosynthetic machinery elucidated a modest bias for glycine at the preceding (-1) position and a remarkable flexibility in the following (+1) position, even allowing for the incorporation of charged amino acids and bisheterocyclization. Two unnatural substrates were utilized as the conclusive test of substrate flexibility, of which both were processed in a predictable fashion. A greater understanding of substrate processing and enzymatic tolerance toward unnatural substrates will prove beneficial when designing combinatorial libraries to screen for artificial TOMMs that exhibit desired activities.  相似文献   

15.
The combination of the unique physical and chemical properties of fluorine with proteinogenic amino acids represents a new approach to the design of biologically active compounds including peptides with improved pharmacological parameters. Therefore, the development of routine synthetic methods which enable the effective and selective introduction of fluorine into the desired amino acids from readily available starting materials is of significant synthetic importance. The scope of this critical review is to summarize the most frequently employed strategies for the synthesis of alpha-difluoromethyl and alpha-trifluoromethyl substituted alpha-amino acids (114 references).  相似文献   

16.
Hexose sugars play a fundamental role in vital biochemical processes and their biosynthesis is achieved through enzyme-catalyzed pathways. Herein we disclose the ability of amino acids to catalyze the asymmetric neogenesis of carbohydrates by sequential cross-aldol reactions. The amino acids mediate the asymmetric de novo synthesis of natural L- and D-hexoses and their analogues with excellent stereoselectivity in organic solvents. In some cases, the four new stereocenters are assembled with almost absolute stereocontrol. The unique feature of these results is that, when an amino acid is employed as the catalyst, a single reaction sequence can convert a protected glycol aldehyde into a hexose in one step. For example, proline and its derivatives catalyze the asymmetric neogenesis of allose with >99 % ee in one chemical manipulation. Furthermore, all amino acids tested catalyzed the asymmetric formation of natural sugars under prebiotic conditions, with alanine being the smallest catalyst. The inherent simplicity of this catalytic process suggests that a catalytic prebiotic "gluconeogenesis" may occur, in which amino acids transfer their stereochemical information to sugars. In addition, the amino acid catalyzed stereoselective sequential cross-aldol reactions were performed as a two-step procedure with different aldehydes as acceptors and nucleophiles. The employment of two different amino acids as catalysts for the iterative direct aldol reactions enabled the asymmetric synthesis of deoxysugars with >99 % ee. In addition, the direct amino acid catalyzed C(2)+C(2)+C(2) methodology is a new entry for the short, highly enantioselective de novo synthesis of carbohydrate derivatives, isotope-labeled sugars, and polyketide natural products. The one-pot asymmetric de novo syntheses of deoxy and polyketide carbohydrates involved a novel dynamic kinetic asymmetric transformation (DYKAT) mediated by an amino acid.  相似文献   

17.
A general synthetic route to two DOTA-linked N-Fmoc amino acids (DOTA-F and DOTA-K) is described that allows insertion of DOTA at any endo-position within a peptide sequence. Three model pentapeptides were prepared to test the general utility of these derivatives in solid-phase peptide synthesis. Both DOTA derivatives reacted smoothly by means of standard HBTU activation chemistry to the point of insertion of the DOTA amino acid, but extension of the peptide chain beyond the DOTA-amino acid insertion required the use of pre-activated C-pentafluorophenyl ester N-alpha-Fmoc amino acids. Three Gal-80 binding peptides (12-mers) were then prepared by using this methodology with DOTA positioned either at the N terminus or at one of two different internal positions;the binding of the resulting GdDOTA-12-mers to Gal-80 were compared. The methodology described here allows versatile, controlled introduction of DOTA into any location within a peptide sequence. This provides a potential method for the screening of libraries of DOTA-linked peptides for optimal targeting properties.  相似文献   

18.
The incorporation of lipid moieties into synthetic peptide vaccines has been demonstrated to self-adjuvant otherwise poorly immunogenic peptides, whereas carbohydrates have emerged to be advantageous carriers for assembling these peptides. With the advent of an efficient native chemical ligation method, which is compatible with both peptides and carbohydrates, we have developed highly pure self-adjuvanting tetravalent group A streptococcal vaccine candidates assembled on carbohydrate templates. The utility of chemoselective ligation has overcome difficulties in the synthesis and purification of branched high molecular weight peptides. Circular dichroism measurements provided the evidence of α-helix formation of the assembled peptide epitopes, which may have impact on their immunogenicity.  相似文献   

19.
Combinatorial chemistry has contributed significantly to understanding the structure-function relationships of biologically important molecules such as proteins and nucleic acids. However, carbohydrates and carbohydrate conjugates, which have been identified as key modulators of several biological functions have not enjoyed the same measure of success. The complexity and synthetic challenges of carbohydrate conjugates have resulted in a number of conceptual approaches to rapidly access sufficient quantities of these biomolecules. This article summarizes these combinatorial approaches and also highlights fully automated library synthesis of artificial glycopeptides with the goals of understanding their biological roles.  相似文献   

20.
Solid phase peptide synthesis (SPPS) provides peptides with a dendritic topology when diamino acids are introduced in the sequences. Peptide dendrimers with one to three amino acids between branches can be prepared with up to 38 amino acids (MW ~ 5,000 Da). Larger peptide dendrimers (MW ~ 30,000) were obtained by a multivalent chloroacetyl cysteine (ClAc) ligation. Structural studies of peptide dendrimers by CD, FT-IR, NMR and molecular dynamics reveal molten globule states containing up to 50% of α-helix. Esterase and aldolase peptide dendrimers displaying dendritic effects and enzyme kinetics (k(cat)/k(uncat) ~ 10(5)) were designed or discovered by screening large combinatorial libraries. Strong ligands for Pseudomonas aeruginosa lectins LecA and LecB able to inhibit biofilm formation were obtained with glycopeptide dendrimers. Efficient ligands for cobalamin, cytotoxic colchicine conjugates and antimicrobial peptide dendrimers were also developed showing the versatility of dendritic peptides. Complementing the multivalency, the amino acid composition of the dendrimers strongly influenced the catalytic or biological activity obtained demonstrating the importance of the "apple tree" configuration for protein-like function in peptide dendrimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号