首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A generalized successive overrelaxation method for least squares problems   总被引:5,自引:0,他引:5  
In this paper a new iterative method is given for solving large sparse least squares problems and computing the minimum norm solution to underdetermined consistent linear systems. The new scheme is called the generalized successive overrelaxation (GSOR) method and is shown to be convergent ifA is full column rank. The GSOR method involves a parameter ρ and an auxiliary matrixP. One can choose matrix P so that the GSOR method only involves matrix and vector operations; therefore the GSOR method is suitable for parallel computations. Besides, the GSOR method can be combined with preconditioning techniques, and therefore can be expected to be more effective. This author's work was supported by Natural Science Foundation of Liaoning Province, China.  相似文献   

2.
Summary. The standard approaches to solving overdetermined linear systems construct minimal corrections to the data to make the corrected system compatible. In ordinary least squares (LS) the correction is restricted to the right hand side c, while in scaled total least squares (STLS) [14,12] corrections to both c and B are allowed, and their relative sizes are determined by a real positive parameter . As , the STLS solution approaches the LS solution. Our paper [12] analyzed fundamentals of the STLS problem. This paper presents a theoretical analysis of the relationship between the sizes of the LS and STLS corrections (called the LS and STLS distances) in terms of . We give new upper and lower bounds on the LS distance in terms of the STLS distance, compare these to existing bounds, and examine the tightness of the new bounds. This work can be applied to the analysis of iterative methods which minimize the residual norm, and the generalized minimum residual method (GMRES) [15] is used here to illustrate our theory. Received July 20, 2000 / Revised version received February 28, 2001 / Published online July 25, 2001  相似文献   

3.
Summary This paper presents a family of methods for accurate solution of higher index linear variable DAE systems, . These methods use the DAE system and some of its first derivatives as constraints to a least squares problem that corresponds to a Taylor series ofy, or an approximative equality derived from a Pade' approximation of the exponential function. Accuracy results for systems transformable to standard canonical form are given. Advantages, disadvantages, stability properties and implementation of these methods are discussed and two numerical examples are given, where we compare our results with results from more traditional methods.  相似文献   

4.
Summary. The standard approaches to solving overdetermined linear systems construct minimal corrections to the vector c and/or the matrix B such that the corrected system is compatible. In ordinary least squares (LS) the correction is restricted to c, while in data least squares (DLS) it is restricted to B. In scaled total least squares (STLS) [22], corrections to both c and B are allowed, and their relative sizes depend on a real positive parameter . STLS unifies several formulations since it becomes total least squares (TLS) when , and in the limit corresponds to LS when , and DLS when . This paper analyzes a particularly useful formulation of the STLS problem. The analysis is based on a new assumption that guarantees existence and uniqueness of meaningful STLS solutions for all parameters . It makes the whole STLS theory consistent. Our theory reveals the necessary and sufficient condition for preserving the smallest singular value of a matrix while appending (or deleting) a column. This condition represents a basic matrix theory result for updating the singular value decomposition, as well as the rank-one modification of the Hermitian eigenproblem. The paper allows complex data, and the equivalences in the limit of STLS with DLS and LS are proven for such data. It is shown how any linear system can be reduced to a minimally dimensioned core system satisfying our assumption. Consequently, our theory and algorithms can be applied to fully general systems. The basics of practical algorithms for both the STLS and DLS problems are indicated for either dense or large sparse systems. Our assumption and its consequences are compared with earlier approaches. Received June 2, 1999 / Revised version received July 3, 2000 / Published online July 25, 2001  相似文献   

5.
Summary Total Least Squares (TLS) is an estimation method for the solutiona of the linear system when both data sets and are subject to error. The TLS-method minimizes the functional with weighting parameter . In this paper the TLS-functional is analyzed by the technique of Lagrangian multipliers. The main part of the work deals with the case when the estimatea is restricted by an inequality of the formD ab0, D a diagonal matrix. It is shown that there exists a unique estimatea if the weighting parameter is chosen sufficiently large.  相似文献   

6.
Under the Golub-Van Loan condition for the existence and uniqueness of the scaled total least squares (STLS) solution, a first order perturbation estimate for the STLS solution and upper bounds for condition numbers of a STLS problem have been derived by Zhou et al. recently. In this paper, a different perturbation analysis approach for the STLS solution is presented. The analyticity of the solution to the perturbed STLS problem is explored and a new expression for the first order perturbation estimate is derived. Based on this perturbation estimate, for some STLS problems with linear structure we further study the structured condition numbers and derive estimates for them. Numerical experiments show that the structured condition numbers can be markedly less than their unstructured counterparts.  相似文献   

7.
The weighting method for solving a least squares problem with linear equality constraints multiplies the constraints by a large number and appends them to the top of the least squares problem, which is then solved by standard techniques. In this paper we give a new analysis of the method, based on the QR decomposition, that exhibits many features of the algorithm. In particular it suggests a natural criterion for chosing the weighting factor. This work was supported in part by the National Science Foundation under grant CCR 95503126.  相似文献   

8.
In this paper, we consider solving the least squares problem minxb-Tx2 by using preconditioned conjugate gradient (PCG) methods, where T is a large rectangular matrix which consists of several square block-Toeplitz-Toeplitz-block (BTTB) matrices and b is a column vector. We propose a BTTB preconditioner to speed up the PCG method and prove that the BTTB preconditioner is a good preconditioner. We then discuss the construction of the BTTB preconditioner. Numerical examples, including image restoration problems, are given to illustrate the efficiency of our BTTB preconditioner. Numerical results show that our BTTB preconditioner is more efficient than the well-known Level-1 and Level-2 circulant preconditioners.  相似文献   

9.
Summary This paper completes our previous discussion on the total least squares (TLS) and the least squares (LS) problems for the linear systemAX=B which may contain more than one solution [12, 13], generalizes the work of Golub and Van Loan [1,2], Van Huffel [8], Van Huffel and Vandewalle [11]. The TLS problem is extended to the more general case. The sets of the solutions and the squared residuals for the TLS and LS problems are compared. The concept of the weighted squares residuals is extended and the difference between the TLS and the LS approaches is derived. The connection between the approximate subspaces and the perturbation theories are studied.It is proved that under moderate conditions, all the corresponding quantities for the solution sets of the TLS and the modified LS problems are close to each other, while the quantities for the solution set of the LS problem are close to the corresponding ones of a subset of that of the TLS problem.This work was financially supported by the Education Committee, People's Republic of China  相似文献   

10.
In this article, we develop symmetric block successive overrelaxation (S-block-SOR) methods for finding the solution of the rank-deficient least squares problems. We propose an S2-block-SOR and an S3-block-SOR method for solving such problems and the convergence of these two methods is studied. The comparisons between the S2-block and the S3-block methods are presented with some numerical examples.  相似文献   

11.
Summary We present here a new hybrid method for the iterative solution of large sparse nonsymmetric systems of linear equations, say of the formAx=b, whereA N, N , withA nonsingular, andb N are given. This hybrid method begins with a limited number of steps of the Arnoldi method to obtain some information on the location of the spectrum ofA, and then switches to a Richardson iterative method based on Faber polynomials. For a polygonal domain, the Faber polynomials can be constructed recursively from the parameters in the Schwarz-Christoffel mapping function. In four specific numerical examples of non-normal matrices, we show that this hybrid algorithm converges quite well and is approximately as fast or faster than the hybrid GMRES or restarted versions of the GMRES algorithm. It is, however, sensitive (as other hybrid methods also are) to the amount of information on the spectrum ofA acquired during the first (Arnoldi) phase of this procedure.  相似文献   

12.
Quadratically constrained least squares and quadratic problems   总被引:9,自引:0,他引:9  
Summary We consider the following problem: Compute a vectorx such that Ax–b2=min, subject to the constraint x2=. A new approach to this problem based on Gauss quadrature is given. The method is especially well suited when the dimensions ofA are large and the matrix is sparse.It is also possible to extend this technique to a constrained quadratic form: For a symmetric matrixA we consider the minimization ofx T A x–2b T x subject to the constraint x2=.Some numerical examples are given.This work was in part supported by the National Science Foundation under Grant DCR-8412314 and by the National Institute of Standards and Technology under Grant 60NANB9D0908.  相似文献   

13.
Summary In this paper the closeness of the total least squares (TLS) and the classical least squares (LS) problem is studied algebraically. Interesting algebraic connections between their solutions, their residuals, their corrections applied to data fitting and their approximate subspaces are proven.All these relationships point out the parameters which mainly determine the equivalences and differences between the two techniques. These parameters also lead to a better understanding of the differences in sensitivity between both approaches with respect to perturbations of the data.In particular, it is shown how the differences between both approaches increase when the equationsAXB become less compatible, when the length ofB orX is growing or whenA tends to be rank-deficient. They are maximal whenB is parallel with the singular vector ofA associated with its smallest singular value. Furthermore, it is shown how TLS leads to a weighted LS problem, and assumptions about the underlying perturbation model of both techniques are deduced. It is shown that many perturbation models correspond with the same TLS solution.Senior Research Assistant of the Belgian N.F.W.O. (National Fund of Scientific Research)  相似文献   

14.
In this paper, we present the preconditioned generalized accelerated overrelaxation (GAOR) method for solving linear systems based on a class of weighted linear least square problems. Two kinds of preconditioning are proposed, and each one contains three preconditioners. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the convergence rate of the preconditioned GAOR methods is indeed better than the rate of the original method, whenever the original method is convergent. Finally, a numerical example is presented in order to confirm these theoretical results.  相似文献   

15.
In this paper a method of estimating the optimal backward perturbation bound for the linear least squares problem is presented. In contrast with the optimal bound, which requires a singular value decomposition, this method is better suited for practical use on large problems since it requiresO(mn) operations. The method presented involves the computation of a strict lower bound for the spectral norm and a strict upper bound for the Frobenius norm which gives a gap in which the optimal bounds for the spectral and the Frobenius norm must be. Numerical tests are performed showing that this method produces an efficient estimate of the optimal backward perturbation bound.  相似文献   

16.
We study the solutions of Toeplitz systemsA n x=b by the preconditioned conjugate gradient method. Then ×n matrixA n is of the forma 0 I+H n wherea 0 is a real number,I is the identity matrix andH n is a skew-Hermitian Toeplitz matrix. Such matrices often appear in solving discretized hyperbolic differential equations. The preconditioners we considered here are the circulant matrixC n and the skew-circulant matrixS n whereA n =1/2(C n +S n ). The convergence rate of the iterative method depends on the distribution of the singular values of the matricesC –1 n An andS –1 n A n . For Toeplitz matricesA n with entries which are Fourier coefficients of functions in the Wiener class, we show the invertibility ofC n andS n and prove that the singular values ofC –1 n A n andS –1 n A n are clustered around 1 for largen. Hence, if the conjugate gradient method is applied to solve the preconditioned systems, we expect fast convergence.  相似文献   

17.
Perturbation bounds for the linear least squares problem min x Axb2 corresponding tocomponent-wise perturbations in the data are derived. These bounds can be computed using a method of Hager and are often much better than the bounds derived from the standard perturbation analysis. In particular this is true for problems where the rows ofA are of widely different magnitudes. Generalizing a result by Oettli and Prager, we can use the bounds to compute a posteriori error bounds for computed least squares solutions.  相似文献   

18.
In this paper, we consider the solution ofn-by-n symmetric positive definite Toeplitz systemsT n x=b by the preconditioned conjugate gradient (PCG) method. The preconditionerM n is defined to be the minimizer of T n B n F over allB n H n whereH n is the Hartley algebra. We show that if the generating functionf ofT n is a positive 2-periodic continuous even function, then the spectrum of the preconditioned systemM n –1 T n will be clustered around 1. Thus, if the PCG method is applied to solve the preconditioned system, the convergence rate will be superlinear.  相似文献   

19.
Fitting data points with some model function such that the sum of squared orthogonal distances is minimized is well-known as TLS, i.e. as total least squares, see Van Huffel (1997). We consider situations where the model is such that there might be no perpendiculars from certain data points onto the model function and where one has to replace certain orthogonal distances by shortest ones, e.g. to corner or border line points. We introduce this considering the (now incomplete) TLS fit by a finite piece of a straight line. Then we study general model functions with linear parameters and modify a well-known descent algorithm (see Seufer (1996), Seufer/Sp?th (1997), Sp?th (1996), Sp?th (1997a) and Sp?th (1997b)) for fitting with them. As applications (to be used in computational metrology) we discuss incomplete TLS fitting with a segment of a circle, the area of a circle in space, with a cylinder, and with a rectangle (see also Gander/Hrebicek (1993)). Numerical examples are given for each case. Received August 27, 1997 / Revised version received February 23, 1998  相似文献   

20.
Two iteration methods are proposed to solve real nonsymmetric positive definite Toeplitz systems of linear equations. These methods are based on Hermitian and skew-Hermitian splitting (HSS) and accelerated Hermitian and skew-Hermitian splitting (AHSS). By constructing an orthogonal matrix and using a similarity transformation, the real Toeplitz linear system is transformed into a generalized saddle point problem. Then the structured HSS and the structured AHSS iteration methods are established by applying the HSS and the AHSS iteration methods to the generalized saddle point problem. We discuss efficient implementations and demonstrate that the structured HSS and the structured AHSS iteration methods have better behavior than the HSS iteration method in terms of both computational complexity and convergence speed. Moreover, the structured AHSS iteration method outperforms the HSS and the structured HSS iteration methods. The structured AHSS iteration method also converges unconditionally to the unique solution of the Toeplitz linear system. In addition, an upper bound for the contraction factor of the structured AHSS iteration method is derived. Numerical experiments are used to illustrate the effectiveness of the structured AHSS iteration method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号