首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some new classes of constitutive relations for elastic bodies have been proposed in the literature, wherein the stresses and strains are obtained from implicit constitutive relations. A special case of the above relations corresponds to a class of constitutive equations where the linearized strain tensor is given as a nonlinear function of the stresses. For such constitutive equations we consider the problem of decomposing the stresses into two parts: one corresponds to a time-independent solution of the boundary value problem, plus a small (in comparison with the above) time-dependent stress tensor. The effect of this initial time-independent stress in the propagation of a small wave motion is studied for an infinite medium.  相似文献   

2.
Magnetorheological (MR) fluids are a class of smart materials whose rheological properties may be rapidly modified by the application of a magnetic field. These materials typically consist of micron-sized ferrous particles dispersed in a fluid. In the present paper, we consider the full system of equations as well as the Clausius-Duhem inequality for moving isotropic MR fluids in an electro-magnetic field. We present the material constitutive relations for a non-Newtonian incompressible MR fluid. To illustrate the validity of the constitutive relations, the flow of a MR fluid between two parallel fixed plates under the influence of a constant magnetic field perpendicular to the flow direction is considered.Received: 14 July 2003, Accepted: 18 May 2004, Published online: 22 February 2005 Correspondence to: A. Dorfmann  相似文献   

3.
In this paper, after a brief discussion on the implicit constitutive relations used in thermoelasticity, based on Fox’s [1] work, we derive a general implicit relation for the heat flux vector. In the section following that we use the methodology suggested by Rajagopal [2] and [69] whereby we derive a class of implicit constitutive relations for q and we show that by selecting appropriate functions appearing in the formulation, we can obtain as special cases the Fourier heat conduction and the Maxwell-Cattaneo-Fox model. We do not discuss the implications of the second law of thermodynamics.  相似文献   

4.
In mathematical physics, one often encounters systems of conservation laws which are consistent with an additional conservation equation. Such systems are of particular interest from the point of view of phenomenological thermodynamics where the additional conservation equation is often interpreted as the entropy law. The systems of conservation laws which imply the additional conservation law are strongly related to symmetric systems. These relations are exploited in thermodynamical theories where the system of field equations consistent with the balance of entropy is often assumed to be symmetric.In this paper we use an invariant definition of symmetric system in order to show that the system of balance laws implies the additional balance law if and only if it implies a symmetric system of a certain kind (see Section 2) and that such a symmetric system is uniquely defined.This property is interesting in the context of a more general question; what conditions for a given system of conservation laws are necessary and/or sufficient to ensure the existence of the additional conservation law.  相似文献   

5.
A method for the homogenization of a layered elastic composite is presented. It allows direct, consistent, and accurate evaluation of the averaged overall frequency-dependent dynamic material constitutive relations without the need for a point-wise solution of the field equations. When the spatial variation of the field variables is restricted by Bloch-form (Floquet-form) periodicity, then these relations together with the overall conservation and kinematical equations accurately yield the displacement or stress mode-shapes and, necessarily, the dispersion relations. The method can also give the point-wise solution of the elastodynamic field equations (to any desired degree of accuracy), which, however, is not required for the calculation of the average overall properties. The resulting overall dynamic constitutive relations are general and need not be restricted by the Bloch-form periodicity.The formulation is based on micromechanical modeling of a representative unit cell of the composite. For waves in periodic layered composites, the overall effective mass-density and compliance (stiffness) are always real-valued whether or not the corresponding unit cell (representative volume element used as a unit cell) is geometrically and/or materially symmetric. The average strain and linear momentum are coupled and the coupling constitutive parameters are always each others' complex conjugates. We separate the overall constitutive relations, which depend only on the composition and structure of the unit cell, from the overall field equations which hold for any elastic composite; i.e., we use only the local field equations and material properties to deduce the overall constitutive relations. Finally, we present solved numerical examples to further clarify the structure of the averaged constitutive relations and to bring out the correspondence of the current method with recently published results.  相似文献   

6.
Material functions are necessary element of the constitutive relations determining any model of continuum. These functions can be defined as a collection of objects from which the operator of constitutive relations can be reconstructed completely. The material functions are found in test experiments and show the differences between a given medium and other media in the framework of the same model [1]. The “test experiment theory” is an important part of modern experimental mechanics.Just as in any experiment, from determining the viscosity coefficient by using the rotational viscosimeters to constructing the yield surface by using machines combined loading, the material functions are determined with an unavoidable error. For example, experimenters know that, in experiments with arbitrary accuracy, the moduli of elasticity can only be measured with an unimprovable tolerance of about 7%. Starting already from [2], the investigators’ attention has been repeatedly drawn to the fact that it is necessary to take into account this tolerance in determining the material constants, functions, and functionals in problems of mechanics and especially in analyzing the stability of deformation processes. Mathematically, this means that problems of stability under perturbations of the initial data, external constantly acting forces, domain boundaries, etc. should be supplemented with the assumption that the material functions have unknown perturbations of a certain class [3].The variations of material functions in the framework of the linearized stability theory were considered in [2, 4, 5]. In what follows, we study isotropic tensor functions in the most general case of scalar and tensor nonlinearity. These functions are assigned the meaning of constitutive relations between the stress and strain rate tensors in continuum. These constitutive relations contain scalar material functions of invariants on which, as follows from the above, some variations proportional to a small physical parameter α can be imposed. These variations imply perturbations of the tensor function itself. The components of such perturbations linear and quadratic in α are determined. In each of the approximations, we write out a closed system of equations consisting of the equations of motion (linear in the variables of the respective approximation) and the incompressibility condition.We analyze tensor-linear functions with arbitrary scalar rheology inmore detail. Materials with such constitutive relations include non-Newtonian viscous fluids and viscoplastic materials. Viscoplastic materials are characterized by the existence of rigidity zones, where the stress intensity is less than the yield strength. We derive equations for the boundaries of the rigidity zones in the perturbed motion, in particular, for the case in which the unperturbed medium is a viscous Newtonian fluid. Throughout the paper, index-free notation is used.  相似文献   

7.
A modified constitutive equation for a second grade fluid is proposed so that the model would be suitable for studies where shear-thinning (or shear-thickening) may occur. In addition, the dependence of viscosity on the temperature follows the Reynolds equation. In this paper, we propose a constitutive relation, (18), which has the basic structure of a second grade fluid, where the viscosity is now a function of temperature, shear rate, and concentration. As a special case, we solve the fully developed flow of a non-Newtonian fluid given by (11), where the effects of concentration are neglected.Received: 28 August 2003, Accepted: 3 March 2004, Published online: 25 June 2004 Correspondence to: M. Massoudi Dedicated to Professor Brian Straughan  相似文献   

8.
Given a general velocity field consistent with the stagnation point flow, can the viscoelastic stresses arising in the flow of an upper convected Maxwell fluid found by solving the constitutive equation also satisfy the momentum equation? Consideration is given to the study of the stress tensor arising in the steady flow of an upper convected Maxwell (UCM) fluid with a velocity field consistent with the stagnation point flow. By the method of characteristics, exact solutions to the partial differential equations arising in the approximating model of the viscoelastic stresses in the flow of an upper convected Maxwell (UCM) fluid are obtained for the three components of the stress tensor, for reasonably general velocity fields. We are able to account for the effects of variable boundary data at the inflow by considering the viscoelastic stresses over two spatial variables. Furthermore, we assume a relatively general velocity field. As a special case, some results present in the recent literature are obtained; it is known that these special case solutions do not satisfy the momentum equation. In the general case we consider, we find that the general solution will not satisfy the momentum equation except in a limited restricted case. We discuss how this shortcoming might be rectified by use of a more general velocity field.  相似文献   

9.
Stationary simple waves in a plasma with anisotropic pressure are investigated on the basis of the hydrodynamic equations of Chew, Goldberger, and Low. In Sec. 1, for the case where the vectors of the average flow velocity and the magnetic field intensity are parallel, the system of equations is reduced to two quasilinear equations for the velocity components. In Sec. 2 the equations for the characteristics are obtained, the system being assumed to be hyperbolic. For the special case of irrotational flow the character of simple waves in flows adjacent to various contours is studied. Section 3 contains a qualitative investigation of changes in the flow parameters in simple waves. In Sec. 4 the possibility of a transition to an unstable state of the plasma is studied.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 12–19, March–April, 1971.The author thanks V. B. Baranov for the formulation of the problem and for his advice and constant attention to the work and also A. G. Kulikovskii for discussion of the results.  相似文献   

10.
11.
We consider one possible approach to the problem of describing the dependence of material plastic strain characteristics on the stress hydrostatic component arising in many porous, fractured, and other inhomogeneous materials. The plastic strain of the media under study is investigated under the plasticity assumption in the corresponding generalized form with the use of the form parameter of the stress state. The plasticity constitutive relations are stated on the basis of the plastic flow law associated with the accepted plasticity condition. For the conditions of plane stress state in the framework of the material rigid-plastic model, a system of partial differential equations is obtained and conditions for its hyperbolicity are determined. The relations for determining the stress fields and velocity fields in plastic domains are obtained, and their properties are investigated. The problem of tension of a strip with symmetric angular notches is solved, where the stress fields are determined and the continuous displacement rate field is constructed. The problem of uniform symmetric tension of a plane with a circular hole is considered. The stress fields in a strip with symmetric circular notches are examined. A comparison with solutions for plastically incompressible media whose properties are invariant with respect to the form of the stress state is performed.  相似文献   

12.
The form of the classical stress–strain relations of linear elasticity are considered here within the context of nonlinear elasticity. For both Cauchy and symmetric Piola-Kirchhoff stresses, conditions are obtained for the associated strain fields so that they are independent of the material constants and compatible with existence of a strain–energy function. These conditions can be integrated in both cases to obtain the most general strain field that satisfies these conditions and the corresponding strain–energy function is obtained. In both cases, a natural choice of form of solution is suggested by the special case of the compatibility conditions being satisfied identically. It will be shown that some strain–energy functions previously introduced in the literature are special cases of the results obtained here. Some recent linear stress–strain relations, proposed in the context of Cauchy elasticity, are examined to see if they are compatible with hyperelasticity.   相似文献   

13.
The first special boundary value problem in the mechanics of deformable solids is considered to derive the effective constitutive relations for a heterogeneous inelastic body. The problem is reduced to a number of auxiliary boundary value problems for functions dependent on the shape of the body and on the form of constitutive relations. In the case of a layer of nonuniform thickness, the problem of finding the effective constitutive relations is reduced to an operator equation whose solution is sought by an iterative method of successive approximations. An approximate analytical formula is proposed to find the effective constitutive relations for a laminated composite on the basis of known inelastic constitutive relations for its components. This approximate formula takes into account the character of structural anisotropy in a laminated composite and, in the elastic case, yields the exact values of the effective elastic modulus.  相似文献   

14.
This work presents a new constitutive model for the effective response of fiber-reinforced elastomers at finite strains. The matrix and fiber phases are assumed to be incompressible, isotropic, hyperelastic solids. Furthermore, the fibers are taken to be perfectly aligned and distributed randomly and isotropically in the transverse plane, leading to overall transversely isotropic behavior for the composite. The model is derived by means of the “second-order” homogenization theory, which makes use of suitably designed variational principles utilizing the idea of a “linear comparison composite.” Compared to other constitutive models that have been proposed thus far for this class of materials, the present model has the distinguishing feature that it allows consideration of behaviors for the constituent phases that are more general than Neo-Hookean, while still being able to account directly for the shape, orientation, and distribution of the fibers. In addition, the proposed model has the merit that it recovers a known exact solution for the special case of incompressible Neo-Hookean phases, as well as some other known exact solutions for more general constituents under special loading conditions.  相似文献   

15.
磁致伸缩材料的非线性本构关系   总被引:7,自引:1,他引:6  
给出了磁致伸缩材料的两个非线性本构关系,即标准平方型和双曲正切型。在确定一维问题的本构系数时,基于已有的实验结果,引进一个材料函数,用来描述磁致伸缩材料的压磁系数随预应力变化的关系。将非 线性本构关系的理论模型计算结果与实验曲线对比,结果表明标准平方型本构关系在中低磁场下能精确地模拟实验曲线,而双曲正切型本构关系在高磁场时能反映材料的磁致应变饱和现象。讨论了在标准平方型本构的一般三维情形,给出了确定本构系数的方法。  相似文献   

16.
In this paper the local existence, uniqueness and continuous dependence for smooth solutions to the initial value problem for a class of generalized (dependent on the time derivative of temperature) thermoelastic materials is proved. The field equations are written as a quasilinear hyperbolic system and the known results by Hughes, Kato and Marsden are applied.  相似文献   

17.
The mechanics of granular and porous media is considered in the light of the modern theories of structured continuum. The basic laws of motion are presented and several constitutive relations are derived. The special case of elastic porous media is considered in detail and the basic field equations are derived and the possible application of the results to soil dynamics is pointed out. The theory of the flow of granular media is also considered and basic equations of motion are derived where the results of Goodman and Cowin are recovered. The viscoplastic flow of porous media is studied and the possible application to soil mechanics is also discussed.  相似文献   

18.
We consider a quasilinear system of partial differential equations (PDEs) governing the one-dimensional unsteady planar and cylindrically symmetric motion of an electrically conducting van der Waals fluid permeated with a transverse magnetic field. An asymptotic method is used to derive an evolution equation that governs the wave amplitude in the far field. Our main objective is to study the evolution equation, and to investigate as to how the presence of magnetic field and geometrical spreading (in cylindrical case) along with the cubic nonlinearity, inherently present in the system, influence the wave structure that finally develops.  相似文献   

19.
This paper is concerned with the effect of a biasing electric field on the propagation of Lamb waves in a piezoelectric plate. On the basis of three dimensional linear elastic equations and piezoelectric constitutive relations, the differential equations of motion under a biasing electric field are obtained and solved. Due to the symmetry of the plate, there are symmetric and antisymmetric modes with respect to the median plane of the piezoelectric plate. According to the characteristics of symmetric modes (odd potential state) and antisymmetric modes (even potential state), the phase velocity equations of symmetric and antisymmetric modes of Lamb wave propagation are obtained for both electrically open and shorted cases. The effect of a biasing electric field on the phase velocity, electromechanical coupling coefficient, stress field and mechanical displacement of symmetric and antisymmetric Lamb wave modes are discussed in this paper and an accompanying paper respectively. It is shown that the biasing electric field has significant effect on the phase velocity and electromechanical coupling coefficient, the time delay owning to the velocity change is useful for high voltage measurement and temperature compensation, the increase in the electromechanical coupling coefficient can be used to improve the efficiency of transduction.  相似文献   

20.
We deduce an energy identity which must be satisfied by the smooth solutions of the system of equations governing the dynamics of body with quasilinear rate-type constitutive equation. We give conditions when a unique energy function exists for rate-type viscoelasticity. In the semilinear case we give the conditions when a unique, positive and convex energy function exists and we obtain estimates in energy for the smooth solutions of initial-boundary value problems. A viscoelastic approach to nonlinear elasticity is discussed. Finally, an example shows that the second law of thermodynamics does not imply stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号