首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the boundary layer flow over a flat plat with slip flow and constant heat flux surface condition is studied. Because the plate surface temperature varies along the x direction, the momentum and energy equations are coupled due to the presence of the temperature gradient along the plate surface. This coupling, which is due to the presence of the thermal jump term in Maxwell slip condition, renders the momentum and energy equations non-similar. As a preliminary study, this paper ignores this coupling due to thermal jump condition so that the self-similar nature of the equations is preserved. Even this fundamental problem for the case of a constant heat flux boundary condition has remained unexplored in the literature. It was therefore chosen for study in this paper. For the hydrodynamic boundary layer, velocity and shear stress distributions are presented for a range of values of the parameter characterizing the slip flow. This slip parameter is a function of the local Reynolds number, the local Knudsen number, and the tangential momentum accommodation coefficient representing the fraction of the molecules reflected diffusively at the surface. As the slip parameter increases, the slip velocity increases and the wall shear stress decreases. These results confirm the conclusions reached in other recent studies. The energy equation is solved to determine the temperature distribution in the thermal boundary layer for a range of values for both the slip parameter as well as the fluid Prandtl number. The increase in Prandtl number and/or the slip parameter reduces the dimensionless surface temperature. The actual surface temperature at any location of x is a function of the local Knudsen number, the local Reynolds number, the momentum accommodation coefficient, Prandtl number, other flow properties, and the applied heat flux.  相似文献   

2.
Analytical models of unsteady free viscous-inviscid interaction of gas flows at transonic speeds, i.e., a transonic boundary layer with self-induced pressure (nonclassical boundary layer) are considered. It is shown that an adequate flow model can be constructed by applying methods of singular perturbations. The results of a comparative analysis of classical and regularized stability models for a boundary layer with self-induced pressure in the case of interaction at transonic speeds are overviewed.  相似文献   

3.
This paper presents a relatively simple numerical method to investigate the flow and heat transfer of laminar power-law fluids over a semi-infinite plate in the presence of viscous dissipation and anisotropy radiation. On one hand, unlike most classical works, the effects of power-law viscosity on velocity and temperature fields are taken into account when both the dynamic viscosity and the thermal diffusivity vary as a power-law function. On the other hand, boundary layer equations are derived by Taylor expansion, and a mixed analytical/numerical method (a pseudo-similarity method) is proposed to effectively solve the boundary layer equations. This method has been justified by comparing its results with those of the original governing equations obtained by a finite element method. These results agree very well especially when the Reynolds number is large. We also observe that the robustness and accuracy of the algorithm are better when thermal boundary layer is thinner than velocity boundary layer.  相似文献   

4.
Igor Vigdorovich 《PAMM》2007,7(1):4090009-4090010
Scaling laws are established for the profiles of mean velocity and temperature, Reynolds-stress components, turbulent heat flux and mean-square temperature fluctuation, skin friction and wall heat transfer in the turbulent boundary layer on a flat plate with transpiration. In the case of blowing, the velocity and temperature distributions represented in scaling variables outside the viscous sublayer have universal forms known from experimental data for flow over an impermeable flat plate. The turbulent shearing stress and heat flux also can be represented in terms of these two functions. In the case of suction, the mean quantities are described by one-parameter families of curves. Universal skin-friction and heat-transfer laws provide a basis for representation of the skin-friction and heat-flux distributions corresponding to different Reynolds numbers and transpiration velocities in terms of universal functions of one variable. The results are obtained without invoking any special closure hypotheses. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Natural convection boundary layer laminar flow from a horizontal circular cylinder with uniform heat flux in presence of heat generation has been investigated. The governing boundary layer equations are transformed into a non-dimensional form and the resulting non-linear systems of partial differential equations, which are solved numerically by two distinct methods namely: (i) implicit finite difference method together with the Keller-box scheme and (ii) perturbation solution technique. The results of the surface shear stress in terms of local skin-friction and the rate of heat transfer in terms of local Nusselt number, velocity distribution, velocity vectors, temperature distribution as well as streamlines, isotherms and isolines of pressure are shown by graphically for a selection of parameter set consisting of heat generation parameter.  相似文献   

6.
In the present investigation we have analyzed the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface. The effects of thermal radiation are carried out for two cases of heat transfer analysis known as (1) Prescribed exponential order surface temperature (PEST) and (2) Prescribed exponential order heat flux (PEHF). The highly nonlinear coupled partial differential equations of Jeffrey fluid flow along with the energy equation are simplified by using similarity transformation techniques based on boundary layer assumptions. The reduced similarity equations are then solved analytically by the homotopy analysis method (HAM). The convergence of the HAM series solution is obtained by plotting (h/2p)\hbar-curves for velocity and temperature. The effects of physical parameters on the velocity and temperature profiles are examined by plotting graphs.  相似文献   

7.
Hypersonic rarefied gas flow over blunt bodies in the transitional flow regime (from continuum to free-molecule) is investigated. Asymptotically correct boundary conditions on the body surface are derived for the full and thin viscous shock layer models. The effect of taking into account the slip velocity and the temperature jump in the boundary condition along the surface on the extension of the limits of applicability of continuum models to high free-stream Knudsen numbers is investigated. Analytic relations are obtained, by an asymptotic method, for the heat transfer coefficient, the skin friction coefficient and the pressure as functions of the free-stream parameters and the geometry of the body in the flow field at low Reynolds number; the values of these coefficients approach their values in free-molecule flow (for unit accommodation coefficient) as the Reynolds number approaches zero. Numerical solutions of the thin viscous shock layer and full viscous shock layer equations, both with the no-slip boundary conditions and with boundary conditions taking into account the effects slip on the surface are obtained by the implicit finite-difference marching method of high accuracy of approximation. The asymptotic and numerical solutions are compared with the results of calculations by the Direct Simulation Monte Carlo method for flow over bodies of different shape and for the free-stream conditions corresponding to altitudes of 75–150 km of the trajectory of the Space Shuttle, and also with the known solutions for the free-molecule flow regine. The areas of applicability of the thin and full viscous shock layer models for calculating the pressure, skin friction and heat transfer on blunt bodies, in the hypersonic gas flow are estimated for various free-stream Knudsen numbers.  相似文献   

8.
This study models the magnetohydrodynamic (MHD) three-dimensional boundary layer flow of viscoelastic fluid. The flow is due to the exponentially stretching surface. The heat transfer analysis is performed through prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The thermal conductivity is taken temperature dependent. Series solutions of velocities and temperatures are constructed. Graphical results for PST and PHF cases are plotted and analyzed. Numerical values of skin-friction coefficients and Nusselt numbers are presented and discussed.  相似文献   

9.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

10.
The combined effect of mixed convection with thermal radiation and chemical reaction on MHD flow of viscous and electrically conducting fluid past a vertical permeable surface embedded in a porous medium is analyzed. The heat equation includes the terms involving the radiative heat flux, Ohmic dissipation, viscous dissipation and the internal absorption whereas the mass transfer equation includes the effects of chemically reactive species of first-order. The non-linear coupled differential equations are solved analytically by perturbation technique. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, thermal stratification and magnetic field. It is observed that the effect of thermal radiation and magnetic field is to decrease the velocity, temperature and concentration profiles in the boundary layer. There is also considerable effect of magnetic field and chemical reaction on skin-friction coefficient and Nusselt number.  相似文献   

11.
The steady mixed convection boundary layer flow over a vertical surface with prescribed heat flux is revisited in this Note. The subset of solutions which can be obtained with the aid of the Reynolds analogy is discussed in a close relationship with the dual solutions reported by Merkin and Mahmood [1] for impermeable, and more recently by Ishak et al. [2], for permeable surfaces.  相似文献   

12.
Fractional shear stress and Cattaneo heat flux models are introduced in characterizing unsteady Marangoni convection heat transfer of viscoelastic Maxwell fluid over a flat surface. Governing equations and boundary condition are formulated firstly via the balance between the surface tension and shear stress. Numerical solutions are obtained by new developed numerical technique and some novel phenomena are found. Results shown that the fractional derivative parameters, Marangoni number and power law exponent have significant influence on characteristics velocity and temperature fields. As fractional derivative parameters increase, the temperature profiles rise remarkably and the viscoelastic effects of the fluid enhance with delayed response to surface tension, however the temperature profiles decline significantly with a thinner thickness of thermal boundary layer with the increase of Marangoni number. The average skin friction coefficient increases with the augment of Marangoni number, while the average Nusselt number decreases for larger values of power law exponent.  相似文献   

13.
A mathematical analysis has been carried out to study magnetohydrodynamic boundary layer flow, heat and mass transfer characteristic on steady two-dimensional flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with uniform magnetic field. Momentum boundary layer equation takes into account of transverse magnetic field whereas energy equation takes into account of Ohmic dissipation due to transverse magnetic field, thermal radiation and non-uniform source effects. An analysis has been performed for heating process namely the prescribed wall heat flux (PHF case). The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved very efficiently by finite-difference method. Favorable comparisons with previously published work on various special cases of the problem are obtained. The effects of various physical parameters on velocity, temperature, concentration distributions are presented graphically and in tabular form.  相似文献   

14.
The inverse problem of determining the temperature and the time-dependent thermal diffusivity from various additional nonlocal information is investigated. These nonlocal conditions can come in the form of an internal or boundary energy, or, in the one-dimensional case, as a difference boundary temperature or heat flux so as to ensure the uniqueness of solution for the heat conduction equation with unknown thermal diffusivity coefficient. The Ritz-Galerkin method with satisfier function is employed to solve the inverse problems numerically. Numerical results are presented and discussed.  相似文献   

15.
The steady mixed convection boundary layer flow over a vertical surface with prescribed heat flux is revisited in this Note. The subset of solutions which can be obtained with the aid of the Reynolds analogy is discussed in a close relationship with the dual solutions reported by Merkin and Mahmood [1] for impermeable, and more recently by Ishak et al. [2], for permeable surfaces.   相似文献   

16.
The present paper is concerned with the study of flow and heat transfer characteristics in the unsteady laminar boundary layer flow of an incompressible viscous fluid over continuously stretching permeable surface in the presence of a non-uniform heat source/sink and thermal radiation. The unsteadiness in the flow and temperature fields is because of the time-dependent stretching velocity and surface temperature. Similarity transformations are used to convert the governing time-dependent nonlinear boundary layer equations for momentum and thermal energy are reduced to a system of nonlinear ordinary differential equations containing Prandtl number, non-uniform heat source/sink parameter, thermal radiation and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge–Kutta–Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the unsteadiness parameter, thermal radiation, suction/injection parameter, non-uniform heat source/sink parameter on flow and heat transfer characteristics as well as on the local Nusselt number are shown graphically.  相似文献   

17.
The general uncoupled dynamical problem of thermoelasticity for a half-space under the condition of a thermal impact with a finite rate of change in temperature on its boundary is solved by the method of principal (fundamental) functions within the framework of a generalized theory of heat conduction.An elastic steel half-space is analyzed as an illustration. The problem on thermal stresses originating in an elastic half-space due to thermal impact produced by a jump change in temperature on the boundary was first analyzed in [1]. Since the temperature change on the boundary occurs at a finite rate, it is generally impossible to realize the thermal impact considered in [1] physically. The dynamic effects in an elastic half-space under a thermal impact with finite rate of change in the temperature on the boundary have been studied in [2]. For high rates of change of the heat flux we obtain a generalized wave equation of heat conduction [3] taking into account the finite velocity of heat propagation. Hence, the solution of the ordinary parabolic heat conduction equation used in [1, 2] does not correspond to the true temperature field. The problems of [1, 2] have been examined in [4, 5], respectively, within the framework of a generalized theory of heat conduction.  相似文献   

18.
An analysis has been carried out to study the magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid over a flat sheet with a linear velocity in the presence of thermal radiation and non-uniform heat source. The thermal conductivity is assumed to vary as a linear function of temperature. The basic equations governing the flow and heat transfer are in the form of partial differential equations, the same have been reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformation. The transformed equations are solved analytically by regular perturbation method. Numerical solution of the problem is also obtained by the efficient shooting method, which agrees well with the analytical solution. The effects of various physical parameters such as viscoelastic parameter, Chandrasekhar number, Prandtl number, variable thermal conductivity parameter, Eckert number, thermal radiation parameter and non-uniform heat source/sink parameters which determine the temperature profiles are shown in several plots and the heat transfer coefficient is tabulated for a range of values of said parameters. Some important findings reported in this work reveals that combined effect of variable thermal conductivity, radiation and non-uniform heat source have significant impact in controlling the rate of heat transfer in the boundary layer region.  相似文献   

19.
Magneto-hydrodynamics and thermal radiation effects on heat and mass transfer in steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate embedded in a fluid saturated porous media in the presence of the thermophoresis particle deposition effect is studied in this paper. The governing equations are transformed by special transformations. Brownian motion of particles and thermophoretic transport are considered in the flow equations. The magnetic field is considered to be applied. Rosseland approximation is used to describe the radiative heat flux in the energy equation. The resulting similarity equations are solved numerically by the fourth-order Runge–Kutta method with shooting technique. Many results are obtained and representative set is displayed graphically to illustrate the influence of the various parameters on the wall thermophoretic deposition velocity, concentration, temperature and velocity profiles.  相似文献   

20.
This paper deals with the solutions of steady as well as unsteady three-dimensional incompressible thermal boundary layer equations and the study of the response of heat transfer when there is a parabolic flow over a moving flat plate. The components of velocity in boundary layer are discussed by Sarma and Gupta and those results are used to analyse thermal boundary layer equations. A general analysis is made from which we deduce (i) Solutions of two-dimensional thermal boundary layer on a moving flat plate, (ii) Solutions of thermal boundary layer on a yawed flat plate, (iii) Solutions of thermal boundary layer when there is a parabolic flow over a moving flat plate by giving different values to β and Cx. Solutions are developed for large and small times and curves are drawn representing the variations of heat transfer from the plate with time for all the cases. The limiting time is also calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号