首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
alpha-Hydrogen migration in the phosphide (Nacnac)Ti=CHtBu(PHR) (Nacnac- = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-iPr2C6H3, R = C6H11, 2,4,6-iPr3C6H2, 2,4,6-tBuC6H2), prepared from salt metathesis of (Nacnac)Ti=CHtBu(PHR) with LiPHR, generates terminal and four-coordinate phosphinidene complexes (Nacnac)Ti=PR(CH2tBu), one of which was structurally characterized (R = 2,4,6-tBu3C6H2). Phosphinidene intermediate (Nacnac)Ti=PR(CH2tBu) (R = C6H11, 2,4,6-iPr3C6H2) transform to ([Ar]NC(Me)CHC(Me)P[R][CH2tBu])Ti=NAr(OEt2) through "phospha-Staudinger" and subsequent phosphaalkene-insertion reactions.  相似文献   

2.
One-electron oxidation of the beta-diketiminate titanium(III) bis-neopentyl complex (Nacnac)Ti(CH2tBu)2 (Nacnac = [Ar]NC(Me)CHC(Me)N[Ar], Ar = 2,6-(CHMe2)2C6H3) promotes alpha-abstraction to afford the rare and terminal four-coordinate neopentylidene (Nacnac)Ti=CHtBu(OTf), which was structurally characterized. Alkylidene (Nacnac)Ti=CHtBu(OTf) reacts cleanly with benzophenone and the imine functionality of the Nacnac ligand to afford the corresponding Wittig-type products.  相似文献   

3.
Addition of an equal molar quantity of R- (R = Me, SiMe3) to complex (Nacnac)Ti=NAr(OTf) (Nacnac- =[ArNC(tBu)]2CH, Ar = 2,6-iPr2C6H3) forms the imido alkyl (Nacnac)Ti=NAr(R), which can be readily protonated to afford [(Nacnac)Ti=NAr(L)]+ (L = THF, Et2O, eta1-C6H5NMe2), or treated with B(C6F5)3 to afford the zwitterion (Nacnac)Ti=NAr(micro-CH3)B(C6F5)3.  相似文献   

4.
Oxidative insertion of the In(I) 'carbene analogues', [In{N(Dipp)C(Me))2CH] (Ar = Dipp = 2,6-iPr2C6H3; Ar = Mes = 2,4,6-Me3C6H2) into the Fe-I bond of [CpFe(CO)2I] occurred cleanly and under mild conditions to yield the In(III) compounds [CH((CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] and [CH( (CH3)2CN-2,4,6-Me3C6H3)2In(I)FeCp(CO)2], which have been fully characterised in solution and the solid state. Attempts to abstract the iodide anion from [CH( (CH3)2CN-2,6-iPr2C6H3)2In(I)FeCp(CO)2] to form cationic species containing a coordinated indium diyl were unsuccessful and resulted in a complex mixture of products from which two ionic species were isolated. Neither cation was found to contain indium by X-ray crystallographic analysis. These observations were indicative of ill-defined decomposition pathways as have been noted by previous workers. A further attempt to form a cationic iron species containing a coordinated [In(N(Dipp)C(Me) )2CH] fragment resulted in oxidation of the iron centre from Fe(II) to Fe(III), with deposition of indium metal, and the isolation of a cationic Fe(III) beta-diketiminate complex.  相似文献   

5.
Reduction of VCl(2)(Nacnac) (Nacnac = HC(C(Me)NC(6)H(3)-iPr(2))(2)) with KC(8) in toluene leads to the formation of a toluene-bridged inverted-sandwich divanadium(I) complex, (mu-eta(6):eta(6)-C(7)H(8))[V(Nacnac)](2), which behaves as a source of V(Nacnac) and a multi-electron reductant in the two reactions studied in this report.  相似文献   

6.
The reaction of ketene OCCPh(2) with the four-coordinate titanium(IV) imide (L(1))Ti[double bond]NAr(OTf) (L(1)(-) = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-[CH(CH(3))(2)](2)C(6)H(3)) affords the tripodal dimine-alkoxo complex (L(2))Ti[double bond]NAr(OTf) (L(2)(-) = [Ar]NC(CH(3))CHC(O)[double bond]CPh(2)C(CH(3))N[Ar]). Complex (L(2))Ti[double bond]NAr(OTf) forms from electrophilic attack of the beta-carbon of the ketene on the gamma-carbon of the Nacnac(-) NCC(gamma)CN ring. On the contrary, nucleophiles such as LiR (R(-) = Me, CH(2)(t)Bu, and CH(2)SiMe(3)) deprotonate cleanly in OEt(2) the methyl group of the beta-carbon on the former Nacnac(-) backbone to yield the etherate complex (L(3))Ti[double bond]NAr(OEt(2)), a complex that is now supported by a chelate bis-anilido ligand (L(3)(2)(-) = [Ar]NC(CH(3))CHC(CH(2))N[Ar]). In the absence of electrophiles or nucleophiles, the robust (L(1))Ti[double bond]NAr(OTf) template was found to form simple adducts with Lewis bases such as CN(t)Bu or NCCH(2)(2,4,6-Me(3)C(6)H(2)). Complexes (L(2))Ti[double bond]NAr(OTf), (L(3))Ti[double bond]NAr(OEt(2)), and the adducts (L(1))Ti[double bond]NAr(OTf)(XY) [XY = CN(t)Bu and NCCH(2)(2,4,6-Me(3)C(6)H(2))] were structurally characterized by single-crystal X-ray diffraction studies.  相似文献   

7.
Four-coordinate vanadium complexes containing a terminal neopentylidyne functionality have been prepared by two consecutive alpha-hydrogen abstraction reactions both of which were induced by one-electron oxidations. Among these vanadium-alkylidyne complexes are the neutral and the cation (Nacnac)VCtBu(OTf) and [(Nacnac)VCtBu(THF)]+, respectively (Nacnac- = [Ar]NC(CH3)CHC(CH3)N[Ar], Ar = 2,6-(CHMe2)2C6H3). The vanadium-alkylidynes have been characterized by 1H, 13C, 51V NMR spectroscopy and single-crystal X-ray diffraction and are consistent with a short VC bond. These alkylidynes were found to transform to azametalacyclohexatriene systems via an intramolecular cross-metathesis reaction. Kinetic studies of the transformation of (Nacnac)VCtBu(OTf) in C7D8 reveal the formation of the azametalacyclohexatriene to be independent of solvent (toluene vs THF) and the reaction to be first order in vanadium (k = 3.30(5) x 10-5 s-1 at 80 degrees C, with activation parameters DeltaH= 25.4(3) kcal/mol, DeltaS = -6(3) cal/molK). High-level DFT calculations on the full model suggest an intramolecular mechanism invoking only one transition state. The overall thermodynamic driving force for the reaction (DeltaG) in solution phase was estimated to be -21.3 kcal/mol.  相似文献   

8.
The syntheses and characterizations of a family of novel heteroleptic magnesium amide thiolates are presented. The compounds are synthesized by ligand redistribution chemistry involving reactions of equimolar amounts of magnesium amides and magnesium thiolates. Utilization of the smaller thiolates [Mg(SPh)2]n and [Mg(S-2,4,6-iPr3C6H2)2]n results in the isolation of dimeric species, [Mg(THF)(N(SiMe3)2)(mu-SR)]2 (R = Ph (1), 2,4,6-iPr3C6H2 (2)), with four-coordinate metal centers and bridging thiolate functions. The sterically more encumbered thiolate S-2,4,6-tBu3C6H2 induces the formation of the four-coordinate, monomeric species Mg(THF)2(N(SiMe3)2)(S-2,4,6-tBu3C6H2) (3)). Careful choice of reaction conditions allows the successful syntheses of pure heteroleptic compounds; however, it remains difficult to obtain the compounds in high yields, since a tendency toward product symmetrization and ligand redistribution under re-formation of the starting materials is prevalent. One of these symmetrized products is also included in this report: the dimeric, four-coordinate magnesium thiolate [Mg-(THF)(S-2,4,6-tBu3C6H2)(mu-S-2,4,6-tBu3C6H2)]2 (4), isolated as the product of the reaction between [Mg-(N(SiMe3)2)2]2 and Mg(THF)2(S-2,4,6-tBu3C6H2)2. All compounds were characterized by NMR and IR spectroscopy, elemental analyses, and X-ray crystallography. Crystal data obtained with Mo K alpha (lambda = 0.710 73 A) radiation are as follows. 1: C16H31MgNOSSi2, a = 11.2100(1) A, b = 17.4512(3) A, c = 11.2999(2) A, beta = 97.952(1) degrees, V = 2189.32(6) A3, Z = 4, monoclinic, space group P2(1)/n, R1 (all data) = 0.0934. 2: C25H49MgNOSSi2, a = 11.1691(1) A, b = 11.0578(1) A, c = 26.0671(4) A, beta = 99.906(1) degrees, V = 3171.44(6) A3, Z = 4, monoclinic, space group P2(1)/c, R1 (all data) = 0.0557. 3: C36H71MgNO3SSi2, a = 42.8293(16) A, b = 10.9737(5) A, c = 16.8305(7) A, beta = 98.755(3) degrees, V = 7818.1(6) A3, Z = 8, monoclinic, space group C2/c, R1 (all data) = 0.1331. 4: C80H132Mg2O2S4, a = 18.8806(2) A, b = 19.3850(2) A, c = 27.3012(4) A, beta = 97.250(1) degrees, V = 9912.4(2) A3, Z = 4, monoclinic, space group P2(1)/n, R1 (all data) = 0.1023.  相似文献   

9.
Three dimeric vanadium(I) β-diketiminates [V{μ-(η(6)-ArN)C(Me)CHC(Me)C(N-Ar)}](2) (Ar = 2,6-Me(2)C(6)H(3) (2), 2,6-Et(2)C(6)H(3) (3), 9-anthracenyl (4)) were prepared and isolated upon reduction of their corresponding dichloro precursors VCl(2)(Nacnac). Compounds 2-4 all show a structure with each vanadium atom being η(2) bonded to the β-diketiminate framework and η(6) bonded to a flanking ring of a β-diketiminato ligand, attached to the other vanadium centre within the dimer. No metal-metal bonding interactions are observed in these dimers due to long vanadium-vanadium separations. Compounds 2-4 display an antiferromagnetic exchange between the two vanadium centres. An imido azabutadienyl complex (η(2)-PhCC(H)C(Ph)NC(6)H(3)-2,6-(i)Pr(2))VN(C(6)H(3)-2,6-(i)Pr(2))(OEt(2)) (5) was isolated from the reduction of VCl(2)(HC(C(Ph)NC(6)H(3)-2,6-(i)Pr(2))(2)) by KC(8). Compounds 2-4 and the inverted-sandwich divanadium complex (μ-η(6):η(6)-C(6)H(5)Me)[V(HC(C(Me)NC(6)H(3)-2,6-(i)Pr(2))(2))](2) (1) reduce Ph(2)S(2) to give two vanadium dithiolates V(SPh)(2)[(HC(C(Me)NC(6)H(3)-2,6-R(2))(2))] (R = Et (6), (i)Pr (7)) through an oxidative addition. Most notably, 1 and 3 catalyze the cyclotrimerization of alkynes, giving tri-substituted benzenes in good yields and a 1,3,5-triphenylbenzene coordinated intermediate 8 was isolated and characterized.  相似文献   

10.
A series of symmetric divalent Sn(II) hydrides of the general form [(4-X-Ar')Sn(mu-H)]2 (4-X-Ar' = C6H2-4-X-2,6-(C6H3-2,6-iPr2)2; X = H, MeO, tBu, and SiMe3; 2, 6, 10, and 14), along with the more hindered asymmetric tin hydride (3,5-iPr2-Ar*)SnSn(H)2(3,5-iPr2-Ar*) (16) (3,5-iPr2-Ar* = 3,5-iPr2-C6H-2,6-(C6H2-2,4,6-iPr3)2), have been isolated and characterized. They were prepared either by direct reduction of the corresponding aryltin(II) chloride precursors, ArSnCl, with LiBH4 or iBu2AlH (DIBAL), or via a transmetallation reaction between an aryltin(II) amide, ArSnNMe2, and BH3.THF. Compounds 2, 6, 10, and 14 were obtained as orange solids and have centrosymmetric dimeric structures in the solid state with long Sn...Sn separations of 3.05 to 3.13 A. The more hindered tin(II) hydride 16 crystallized as a deep-blue solid with an unusual, formally mixed-valent structure wherein a long Sn-Sn bond is present [Sn-Sn = 2.9157(10) A] and two hydrogen atoms are bound to one of the tin atoms. The Sn-H hydrogen atoms in 16 could not be located by X-ray crystallography, but complementary M?ssbauer studies established the presence of divalent and tetravalent tin centers in 16. Spectroscopic studies (IR, UV-vis, and NMR) show that, in solution, compounds 2, 6, 10, and 14 are predominantly dimeric with Sn-H-Sn bridges. In contrast, the more hindered hydrides 16 and previously reported (Ar*SnH)2 (17) (Ar* = C6H3-2,6-(C6H2-2,4,6-iPr3)2) adopt primarily the unsymmetric structure ArSnSn(H)2Ar in solution. Detailed theoretical calculations have been performed which include calculated UV-vis and IR spectra of various possible isomers of the reported hydrides and relevant model species. These showed that increased steric hindrance favors the asymmetric form ArSnSn(H)2Ar relative to the centrosymmetric isomer [ArSn(mu-H)]2 as a result of the widening of the interligand angles at tin, which lowers steric repulsion between the terphenyl ligands.  相似文献   

11.
The reduction of Ar*GeCl (Ar* = C6H3-2,6-Trip2; Trip = C6H2-2,4,6-i-Pr3) with one equivalent of potassium leads to the formation of a germanium analogue of an alkyne Ar*GeGeAr* 1; reaction of 1 with 2,3-dimethyl-1,3-butadiene yields [Ar*Ge(CH2C(Me)C(Me)CH2)CH2C(Me)=]2 2, which was structurally characterized.  相似文献   

12.
Treatment of the iron bis(dinitrogen) complex, (iPrPDI)Fe(N2)2 (iPrPDI = (2,6-iPr2C6H3N=CMe)2C5H3N), with a series of aryl azides resulted in loss of 3 equiv of N2 and formation of the corresponding four-coordinate iron imide compounds, (iPrPDI)Fe(NAr). These complexes, two of which (Ar = 2,6-iPr2-C6H3 and 2,4,6-Me3-C6H2) have been characterized by X-ray diffraction, are significantly distorted from planarity. The metrical parameters in combination with M?ssbauer spectroscopic and SQUID magnetic data suggest an intermediate spin iron(III) center antiferromagnetically coupled to a ligand-centered radical. Nitrene group transfer has been accomplished by addition of 1 atm of CO, yielding aryl isocyanates, ArNCO, and (iPrPDI)Fe(CO)2. Hydrogenation of the more sterically hindered members of the series furnished free aniline and the previously reported iron dihydrogen complex. Catalytic aryl azide hydrogenation has also been achieved, and the observed relative rates are consistent with N-H bond formation as the rate-determining step in aniline formation.  相似文献   

13.
The reaction of (BDI)MgiPr [BDI = HC(C(Me)=N-2,6-iPr2C6H3)2] with 2',4',6'-trimethylacetophenone in toluene affords the enolate complex [(BDI)Mg(mu-OC(=CH2)-2,4,6-Me3C6H2)]2 which is found to be an excellent initiator for the living, syndioselective (sigma r > 0.95) polymerisation of methyl methacrylate.  相似文献   

14.
The addition of LiPh to Ar*SnCl (Ar* = C6H3-2,6-Trip2; Trip = C6H2-2,4,6-iPr3) at low temperature afforded the Sn(1)-Sn(III) species Ar*SnSnPh2Ar*, which exists in equilibrium with the Sn(II) compound Ar*SnPh. It is the first example of a room-temperature equilibrium of compounds involving main group elements in different oxidation states.  相似文献   

15.
The imidazolium salts [3-R1-1-{2-Ar-imino)-2-R2-ethyl}imidazolium] chloride (C-N; Ar = 2,6-iPr2C6H3; R1/R2 = Me/Me (a), Me/Ph (b), Ph/Me (c), 2,4,6-Me3C6H2 (d), 2,6-iPr2C6H3 (e)) react with Ag(2)O to give Ag(I) iminocarbene complexes (C-N)AgCl (4a-e) in which the iminocarbene ligand is bonded to Ag via the imidazoline-2-ylidene carbon atom. The solid-state structures of 4b and 4d were determined by X-ray crystallography and revealed the presence of monomeric (carbene)AgCl units with Z and E configurations at the imine C=N bonds, respectively. Carbene transfer to Pd occurs when compounds 4b-e are treated with (COD)PdCl2 to yield bis(carbene) complexes (C-N)2PdCl2 (6b-e) containing two kappa1-C bonded iminocarbene moieties. NMR spectroscopic data indicated a trans coordination geometry at Pd. This conclusion was supported by an X-ray structure determination of 6b which clearly demonstrated the non-chelating nature of the iminocarbene ligand system. EXSY 1H NMR spectroscopy suggests that the non-chelating structures undergo E/Z isomerization at the imine C[double bond, length as m-dash]N double bonds in solution. The preparative results contrast our earlier report that the reaction between 4a and (COD)PdCl2 results in a chelating kappa2-C,N bonded iminocarbene complex (C-N)PdCl2. The coordination mode and dynamic behavior of the iminocarbene ligand systems have been found to be dramatically affected by changes in the substitution pattern of the ligand system. Sterically unencumbered systems (a) favor the formation of kappa2-C,N chelate structures containing one iminocarbene moiety per metal upon coordination at Pd(II); these complexes were demonstrated to engage in reversible, solvent-mediated chelate ring-opening reactions. Sterically encumbered systems (b-e) form non-chelating kappa1-C iminocarbene Pd(II) complexes containing two iminocarbene ligands per metal. Transannular repulsions across the chelate ring are believed to be the origin of these structural differences.  相似文献   

16.
The effects of different terphenyl ligand substituents on the quintuple Cr-Cr bonding in arylchromium(I) dimers stabilized by bulky terphenyl ligands (Ar) were investigated. A series of complexes, ArCrCrAr (1-4; Ar = C6H2-2,6-(C6H3-2,6-iPr2)2-4-X, where X = H, SiMe3, OMe, and F), was synthesized and structurally characterized. Their X-ray crystal structures display similar trans-bent C(ipso)CrCrC(ipso) cores with short Cr-Cr distances that range from 1.8077(7) to 1.8351(4) A. There also weaker Cr-C interactions [2.294(1)-2.322(2) A] involving an C(ipso) of one of the flanking aryl rings. The data show that the changes induced in the Cr-Cr bond length by the different substituents X in the para positions of the central aryl ring of the terphenyl ligand are probably a result of packing rather than electronic effects. This is in agreement with density functional theory (DFT) calculations, which predict that the model compounds (4-XC6H4)CrCr(C6H4-4-X) (X = H, SiMe3, OMe, and F) have similar geometries in the gas phase. Magnetic measurements in the temperature range of 2-300 K revealed temperature-independent paramagnetism in 1-4. UV-visible and NMR spectroscopic data indicated that the metal-metal-bonded solid-state structures of 1-4 are retained in solution. Reduction of (4-F3CAr')CrCl (4-F3CAr' = C6H2-2,6-(C6H3-2,6-iPr2)2-4-CF3) with KC8 gave non-Cr-Cr-bonded fluorine-bridged dimer {(4-F3CAr')Cr(mu-F)(THF)}2 (5) as a result of activation of the CF3 moiety. The monomeric, two-coordinate complexes [(3,5-iPr2Ar*)Cr(L)] (6, L = THF; 7, L = PMe3; 3,5-iPr2Ar* = C6H1-2,6-(C6H-2,4,6-iPr3)2-3,5-iPr2) were obtained with use of the larger 3,5-Pri2-Ar* ligand, which prevents Cr-Cr bond formation. Their structures contain almost linearly coordinated CrI atoms, with high-spin 3d5 configurations. The addition of toluene to a mixture of (3,5-iPr2Ar*)CrCl and KC8 gave the unusual dinuclear benzyl complex [(3,5-iPr2Ar*)Cr(eta3:eta6-CH2Ph)Cr(Ar*-1-H-3,5-iPr2)] (8), in which a C-H bond from a toluene methyl group was activated. The electronic structures of 5-8 have been analyzed with the aid of DFT calculations.  相似文献   

17.
Alpha-hydrogen abstraction and alpha-hydrogen migration reactions yield novel titanium(IV) complexes bearing terminal phosphinidene ligands. Via an alpha-H migration reaction, the phosphinidene ((tBu)nacnac)Ti=P[Trip](CH(2)(tBu) ((tBu)nacnac(-) = [Ar]NC((t)Bu)CHC((t)Bu)N[Ar], Ar = 2,6-(CHMe2)(2C6H3, Trip = 2,4,6-(i)Pr3C6H2) was prepared by the addition of the primary phosphide LiPH[Trip] to the nucleophilic alkylidene triflato complex ((tBu)nacnac)Ti=CH(t)Bu(OTf), while alpha-H abstraction was promoted by the addition of LiPH[Trip] to the dimethyl triflato precursor ((tBu)nacnac)Ti(CH)(2)(OTf) to afford ((tBu)nacnac)Ti=P[Trip](CH3). Treatment of ((tBu)nacnac)Ti=P[Trip](CH3) with B(C6F5)(3) induces methide abstraction concurrent with formation of the first titanium(IV) phosphinidene zwitterion complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)}. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5)(3)} [2 + 2] cycloadds readily PhCCPh to afford the phosphametallacyclobutene [((tBu)nacnac)Ti(P[Trip]PhCCPh)][CH3B(C6F5)(3)]. These titanium(IV) phosphinidene complexes possess the shortest Ti=P bonds reported, have linear phosphinidene groups, and reveal significantly upfielded solution 31P NMR spectroscopic resonances for the phosphinidene phosphorus. Solid state 31P NMR spectroscopic data also corroborate with all three complexes possessing considerably shielded chemical shifts for the linear and terminal phosphinidene functionality. In addition, high-level DFT studies on the phosphinidenes suggest the terminal phosphinidene linkage to be stabilized via a pseudo Ti[triple bond]P bond. Linearity about the Ti-P-C(ipso) linkage is highly dependent on the sterically encumbering substituents protecting the phosphinidene. Complex ((tBu)nacnac)Ti=P[Trip]{CH3B(C6F5))(3)} can catalyze the hydrophosphination of PhCCPh with H(2)PPh to produce the secondary vinylphosphine HP[Ph]PhC=CHPh. In addition, we demonstrate that this zwitterion is a powerful phospha-Staudinger reagent and can therefore act as a carboamination precatalyst of diphenylacetylene with aldimines.  相似文献   

18.
Reaction of TlCl and [LiN(Me)Ar(Mes)2](2) [Ar(Mes)2 = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2)] in Et(2)O generated the thallium amide, TlN(Me)Ar(Mes)2 (1). X-ray data showed that it has a monomeric structure with an average Tl-N distance of 2.364(3) Angstroms. There was also a Tl-arene approach [Tl-centroid = 3.026(2) Angstroms (avg)] to a flanking mesityl ring from the terphenyl substituent. DFT calculations showed that this interaction is weak and supported essentially one coordination for thallium. The electronic spectrum of 1 is hypsochromically shifted in comparison to the monomeric TlAr(Trip)2 (Trip = C(6)H(2)-2,4,6-Pr(i)(3)).  相似文献   

19.
Tridentate dianionic arylsulfide free ligands [ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh] (Ar = Ph (3a); Ar = 2,4,6-trimethylphenyl (3b); Ar = 2,6-diisopropylphenyl (3c)) have been prepared by reduction of the corresponding imine compounds [ArN[double bond, length as m-dash]CHC(6)H(4)NHC(6)H(4)-2-SPh] (Ar = Ph (2a); Ar = 2,4,6-trimethylphenyl (2b); Ar = 2,6-diisopropylphenyl (2c)) with LiAlH(4) in high yields. Reactions of TiCl(4) with the tridentate dianionic arylsulfide free ligands (3a-3c) afford five-coordinate and four-coordinate titanium complexes [κS, κ(2)N-(ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh)TiCl(2)] (Ar = Ph (4a); Ar = 2,4,6-trimethylphenyl (4b)] and [κ(2)N-(ArNHCH(2)C(6)H(4)NHC(6)H(4)-2-SPh)TiCl(2)] (Ar = 2,6-diisopropylphenyl (4c)], respectively. The molecular structures of compounds 2b, 2c, 3b and 3c·HCl have been characterized by single crystal X-ray diffraction analyses. Complexes 2a-4c are characterized by IR,(1)H-NMR spectra, and elemental analysis. EXAFS spectroscopy performed on complexes 4b and 4c reveals the expected different coordination geometry due to steric hindrance effect. When activated by excess methylaluminoxane (MAO), 4a-4c can be used as catalysts for ethylene polymerization and exhibit moderate to good activities.  相似文献   

20.
Reaction of LnCl3 with KSeAr* in thf afforded the unsolvated, alkane-soluble complexes LnCl(SeAr*)2 (Ln = Nd, Pr; Ar* = 2,6-Trip(2)C(6)H(3); Trip = 2,4,6-iPr(3)C(6)H(2)) in which the rare-earth metal cations show additional eta6-pi-coordination by two flanking arene rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号