首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
The blood-brain permeation of a structurally diverse set of 281 compounds was modeled using linear regression and a multivariate genetic partial least squares (G/PLS) approach. Key structural features affecting the logarithm of blood-brain partitioning (logBB) were captured through statistically significant quantitative structure-activity relationship (QSAR) models. These relationships reveal the importance of logP, polar surface area, and a variety of electrotopological indices for accurate predictions of logBB. The best models reveal an excellent correlation (r > 0.9) for a training set of 58 compounds. Likewise, the comparison of the average logBB values obtained from an ensemble of QSAR models with experimental values also verifies the statistical quality of the models (r > 0.9). The models provide good agreement (r approximately 0.7) between the predicted logBB values for 34 molecules in the external validation set and the experimental values. To further validate the models for use during the drug discovery process, a prediction set of 181 drugs with reported CNS penetration data was used. A >70% success rate is obtained by using any of the QSAR models in the qualitative prediction for CNS permeable (active) drugs. A lower success rate (approximately 60%) was obtained for the best model for CNS impermeable (inactive) drugs. Combining the predictions obtained from all the models (consensus) did not significantly improve the discrimination of CNS active and CNS inactive molecules. Finally, using the therapeutic classification as a guiding tool, the CNS penetration capability of over 2000 compounds in the Synthline database was estimated. The results were very similar to the smaller set of 181 compounds.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号