首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron impact ionization of propane (C3H8) was studied using the ion beam deflection technique and a double focussing mass spectrometer in conjunction with a recently developed correction procedure that accounts for discrimination due to the initial kinetic energy of fragment ions. The relative corrected partial ionization cross sections for the production of C3H 8 + , C3H 7 + , C3H 6 + , C3H 5 + , C3H 4 + , C3H 3 + , C3H 2 + , C3H+, C 3 + ; C2H 5 + , C2H 4 + , C2H 3 + , C2H 2 + , C2H+, C 2 + ; CH 3 + , CH 2 + , CH+, C+; C3H 5 2+ , C3H 4 2+ , C3H 3 2+ and C3H 2 2+ were determined from threshold up to 950 eV. Absolute partial ionization cross sections were obtained by charge weighted summing of all the observed partial ionization cross sections and by normalizing to a recent accurate determination of the total ionization cross section at 100 eV by Djuric et al. 1991. The absolute total ionization cross section curve obtained is in excellent agreement in shape and magnitude with the low energy data (<200 ev)=" of=" djuric=" et=" al.=" 1991=" and=" the=" high=" energy=" data=" points=" of=" schram=" et=" al.=">  相似文献   

2.
We present absolute partial electron impact ionization cross sections for ethylene in the electron energy range between threshold and 1000 eV measured with a two sector field double focusing mass spectrometer. Ion kinetic energy distribution functions have been measured at all electron energies by applying a deflection field method. Multiplication of the measured relative cross sections by the appropriately determined discrimination factors lead to accurate relative partial cross sections. Normalization of the sum of the relative partial cross sections to an absolute total cross section gives absolute partial cross section values. The initial kinetic energy distributions of several fragment ions show the presence of two or more contributions that exhibit different electron energy dependencies. Differential cross sections with respect to the initial kinetic energy of the ions are provided and are related to specific ion production channels. The electron threshold energies for the direct and numerous other dissociative ionization channels are determined by quantum chemical calculation and these allow the determination of the total kinetic energy release and the electron energy loss for the most prominent dissociative ionization channels.  相似文献   

3.
We report total scattering cross sections for C2H4 molecule by electron impact. Calculations are performed by using two different quantum mechanical methods and they cover the energy range from 1 to 2000 eV. For low energy calculations up to 15 eV, UK molecular R‐matrix code through QUANTEMOL‐N software is used, while intermediate to high energy (15–2000 eV) calculations were carried out by applying spherical complex optical potential formalism. Comparison is made with earlier measurements and theoretical data wherever available. A shape resonance is detected around 2 eV due to the 2B2g symmetry of an electronic state that corresponds to the temporary negative ion formation of ethylene. The differential cross sections are also calculated for the energy range from 1 to15 eV for the scattering angles between 0º and 180º. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Absolute photoionization cross sections for cyclopentanone and cyclohexanone, as well as partial ionization cross sections for the dissociative ionized fragments, are presented in this investigation. Experiments are performed via a multiplexed photoionization mass spectrometer utilizing vacuum ultraviolet (VUV) synchrotron radiation supplied by the Advanced Light Source of Lawrence Berkeley National Laboratory. These results allow the quantification of these species that is relevant to investigate the kinetics and combustion reactions of potential biofuels. The CBS‐QB3 calculated values for the adiabatic ionization energies agree well with the experimental values, and the identification of possible dissociative fragments is discussed for both systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
We report absolute elastic differential, integral and momentum transfer cross sections for electron interactions with CCl(4). The incident electron energy range is 1.5-100 eV, and the scattered electron angular range for the differential measurements varies from 15°-130°. The absolute scale of the differential cross section was set using the relative flow technique with helium as the reference species. Comparison with previous total cross sections shows good agreement. Atomic-like behaviour in this scattering system is shown here for the first time, and is further investigated by comparing the CCl(4) elastic cross sections to recent results on the halomethanes and atomic chlorine at higher impact energies [H. Kato, T. Asahina, H. Masui, M. Hoshino, H. Tanaka, H. Cho, O. Ingólfsson, F. Blanco, G. Garcia, S. J. Buckman, and M. J. Brunger, J. Chem. Phys. 132, 074309 (2010)].  相似文献   

6.
Single and double differential ionization cross sections for the production of ions resulting from dissociative, single and double ionization of SF(6) by electron impact have been calculated using a semiempirical formulation based on the Jain-Khare approach. In addition, triple differential cross sections have been obtained for some of the doubly charged fragment ions at an incident electron energy of 100, 150, and 200 eV, respectively, and a fixed scattering angle of 30 degrees. As no previous data seem to exist for differential cross sections we have derived from these differential cross sections corresponding partial and total ionization cross sections from threshold up to 900 eV and compared those with the available theoretical and experimental data.  相似文献   

7.
Quantum mechanical calculations are reported for electron-methane elastic scattering and rotational excitation cross sections at 10 eV impact energy. The calculations employ a fixed-nuclei close coupling formalism with full incorporation of symmetry and are used to test previous laboratory-frame calculations employing a direct coupling approximation. Good agreement is obtained. Additional comparisons to previous theoretical and experimental work are also presented, and the contributions of the various symmetries to the cross sections are analyzed in terms of representatve matrix elements of the interaction potential.  相似文献   

8.
Absolute photoionization cross sections for 2 potential propargylic fuels (propargylamine and dipropargyl ether) along with the partial ionization cross sections for their dissociative fragments are measured and presented for the first time via synchrotron photoionization mass spectrometry. The experimental setup consists of a multiplexed orthogonal time‐of‐flight mass spectrometer and is located at the Advanced Light Source facility of the Lawrence Berkeley National Laboratory in Berkeley, California. Data for a third propargylic compound (propargyl alcohol) were taken; however, because of its low signal, due to its weakly bound cation, only the dissociative ionization fragment from the H‐loss channel is observed and presented. Suggested pathways leading to formation of dissociative photoionization fragments along with CBS‐QB3 calculated adiabatic ionization energies and appearance energies for the dissociative fragments are also presented.  相似文献   

9.
The hyperfine structure sub-levels of the 5s5p3P1 state of cadmium are populated coherently with a 35 ps light pulse. The coherence is detected in a second excitation step resulting in a modulation of the ionization probability. A third light pulse ionizes the atom. Differences in the H.F.S. of the odd isotopes are used to selectively enhance the ionization of one isotope. In a magnetic field the Zeeman splitting of the hyperfine structure causes an additional modulation. Measurements and a theoretical interpretation are given.  相似文献   

10.
The absolute cross sections for electronic excitations of thymine by electron impact between 5 and 12 eV are determined by means of electron-energy loss (EEL) spectroscopy for the molecule deposited at submonolayer coverage on an inert Ar substrate. The lowest EEL features at 3.7 and 4.0 eV are attributed to the excitation of the triplet 1 3A'(pi --> pi*) and 1 3A'(n --> pi*) valence states of the molecule. The higher EEL features located at 4.9, 6.3, 7.3, and 9 eV with a weak shoulder around 6 eV are ascribed mostly to triplet valence (pi --> pi*) excitation manifold of the molecule. The energy dependence of the cross section for both the lowest triplet valence excitations shows essentially a peak at about 5 eV reaching a value of 2.9 x 10(-17) cm2. The cross sections for the higher EEL features are generally characterized by a common broad maximum around 8 eV. The latter reaches a value of 1.36 x 10(-16) cm2 for the combined 6 and 6.3 eV excitation region. The maxima in the present cross sections are found to correspond to the resonances that have been reported at about the same energies in the O- yield from electron impact on thymine in the gas phase.  相似文献   

11.
Low-energy vibrational and electronic electron-energy-loss (EEL) spectra of pyrimidine condensed on a thin film of solid argon held at 18 K are reported for the incident-energy range of 2-12 eV. Sensitivity to symmetry and spin forbidden transitions as well as correlations to the triplet states of benzene make it possible to ascribe the main features, below 7 eV in the electronic part of the EEL spectrum, to triplet transitions. The lowest EEL feature with an energy onset at 3.5 eV is attributed to a transition to the (3)B(1)(n-->pi(*)) valence electronic state and the next triplet n-->pi(*) transition to a (3)A(2) state located around 4.5 eV. The remaining EEL features at 4.3, 5.2, 5.8, and 6.5 eV are all assigned to pi-->pi(*) transitions to states of symmetry (3)B(2), (3)A(1), (3)B(2), and (3)B(2)+(3)A(1), respectively. The most intense maximum at 7.6 eV is found to correspond to both (1)B(2) and (1)A(1) transitions, as in the vacuum ultraviolet spectra. Absolute inelastic cross sections per scatterer are derived from a single collision treatment described herein. Their values are found to lie within the 10(-17) cm(2) range for both the electronic and the vibrational excitations. Features in the energy dependence of the cross sections are discussed, whenever possible, by comparison with data and mechanisms found in the gas phase. A maximum over the 4-5 eV range is attributed to a B (2)B(1) shape resonance and another one observed in the 6-7 eV range is ascribed to either or both sigma(*) shape resonances of (2)A(1) and (2)B(2) symmetries.  相似文献   

12.
13.
A semiempirical method is described for calculating electron-molecule interaction potential, electron density, and elastic and vibrational inelastic cross sections using experimental data.CF 4 was considered as un example. Experimental data from IR and Raman spectra, molecular property calculations (dipole matrix elements, polarizability, distance between atoms in molecule), beam measurements of total, momentum transfer, and differential cross sections, and swarm data (diffusion and drift veolcity) are used for extracting the interaction potential, the molecule electron density, avid the differential cross sections. Electron energy distribution functions, drift velocity, and characteristic energy are calculated with the obtained differential e-CF 4 cross sections lierAr/CF 4 mixtures.  相似文献   

14.
Absolute photoionization cross sections of the molecules 2‐ethylfuran, 2‐acetylfuran and furfural, including partial ionization cross sections for the dissociative ionized fragments, are measured for the first time. These measurements are important because they allow fuel quantification via photoionization mass spectrometry and the development of quantitative kinetic modeling for the complex combustion of potential fuels. The experiments are carried out using synchrotron photoionization mass spectrometry with an orthogonal time‐of‐flight spectrometer used for mass analysis at the Advanced Light Source of Lawrence Berkeley National Laboratory. The CBS‐QB3 calculations of adiabatic ionization energies and appearance energies agree well with the experimental results. Several bond dissociation energies are also derived and presented. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A time-of-flight (TOF) electron spectrometer has been used to measure absolute total cross sections (TCS) scattered from helium and argon over the energy range from 1 to 50 eV. The TOF spectrometer and experimental procedure are described briefly, and experimental results are presented together with associated errors. The results are found to be in good agreement with other experimental and theoretical data.  相似文献   

17.
Soft single photon ionization (SPI)-time-of-flight mass spectrometry (TOFMS) is well suited for fast and comprehensive analysis of complex organic gas mixtures, which has been demonstrated in various applications. This work describes a calibration scheme for SPI, which enables quantification of a large number of compounds by only calibrating one compound of choice, in this case benzene. Photoionization cross sections of 22 substances were determined and related to the yield of benzene. These substances included six alkanes (pentane, hexane, heptane, octane, nonane, decane), three alkenes (propene, butane, pentene), two alkynes (propyne, butyne), two dienes (butadiene, isoprene), five monoaromatic species (benzene, toluene, xylene, styrene, monochlorobenzene) and NO. The cross sections of organic compounds differ by about one order of magnitude but the photoionization properties of compounds belonging to one compound class are rather similar. Therefore, the scheme can also be used for an approximate quantification of compound classes. This is demonstrated by a fast characterization and pattern recognition of two gasoline samples with different origins (Germany and South Africa) and a diesel sample (Germany). The on-line capability of the technique and the scheme is demonstrated by quantitatively monitoring and comparing the cold engine start of four vehicles: a gasoline passenger car, a diesel van, a motorbike and a two-stroke scooter.  相似文献   

18.
The mass spectral signatures of airborne bacteria were measured and analyzed in cloud simulation experiments at the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) facility. Suspensions of cultured cells in pure water were sprayed into the aerosol and cloud chambers forming an aerosol which consisted of intact cells, cell fragments and residual particles from the agar medium in which the bacteria were cultured. The aerosol particles were analyzed with a high‐resolution time‐of‐flight aerosol mass spectrometer equipped with a newly developed PM2.5 aerodynamic lens. Positive matrix factorization (PMF) using the multilinear engine (ME‐2) source apportionment was applied to deconvolve the bacteria and agar mass spectral signatures. The bacteria mass fraction contributed between 75 and 95% depending on the aerosol generation, with the remaining mass attributed to agar. We present mass spectra of Pseudomonas syringae and Pseudomonas fluorescens bacteria typical for ice‐nucleation active bacteria in the atmosphere to facilitate the distinction of airborne bacteria from other constituents in ambient aerosol, e.g. by PMF/ME‐2 source apportionment analyses. Nitrogen‐containing ions were the most salient feature of the bacteria mass spectra, and a combination of C4H8N+ (m/z 70) and C5H12N+ (m/z 86) may be used as marker ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The electron impact K‐shell ionization (EIKSI) cross sections on 18 atomic targets, with the atomic numbers 2 ≤ Z ≤ 92, are calculated using a modified version of the binary encounter approximation (BEA) model. The modified BEA (MBEA), which incorporates both ionic and relativistic corrections and is simpler in application than other existing models, is found to be immensely successful in describing the EIKSI data up to the incident energy of 1 GeV. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号