首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose nanofibers from white and naturally colored cotton fibers   总被引:1,自引:1,他引:0  
Suspensions of white and colored nanofibers were obtained by the acid hydrolysis of white and naturally colored cotton fibers. Possible differences among them in morphology and other characteristics were investigated. The original fibers were subjected to chemical analysis (cellulose, lignin and hemicellulose content), X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The nanofibers were analyzed with respect to yield, elemental composition (to assess the presence of sulfur), zeta potential, morphology (by scanning transmission electron microscopy (STEM)) and atomic force microscopy (AFM), crystallinity (XRD) and thermal stability by thermogravimetric analysis in air under dynamic and isothermal temperature conditions. Morphological study of several cotton nanofibers showed a length of 85–225 nm and diameter of 6–18 nm. The micrographs also indicated that there were no significant morphological differences among the nanostructures from different cotton fibers. The main differences found were the slightly higher yield, sulfonation effectiveness and thermal stability under dynamic temperature conditions of the white nanofiber. On the other hand, in isothermal conditions at 180 °C, the colored nanofibers showed a better thermal stability than the white.  相似文献   

2.
Curaua nanofibers extracted under different conditions were investigated. The raw fibers were mercerized with NaOH solutions; they were then submitted to acid hydrolysis using three different types of acids (H2SO4, a mixture of H2SO4/HCl and HCl). The fibers were analyzed by cellulose, lignin and hemicellulose contents; viscometry, X-ray diffraction (XRD) and thermal stability by thermogravimetric analysis (TG). The nanofibers were morphologically characterized by transmission electron microscopy (TEM) and their surface charges in suspensions were estimated by Zeta-potential. Their degree of polymerization (DP) was characterized by viscometry, crystallinity by XRD and thermal stability by TG. Increasing the NaOH solution concentration in the mercerization, there was a decrease of hemicellulose and lignin contents and consequently an increase of cellulose content. XRD patterns presented changes in the crystal structure from cellulose I to cellulose II when the fibers were mercerized with 17.5% NaOH solution. All curaua nanofibers presented a rod-like shape, an average diameter (D) of 6–10 nm and length (L) of 80–170 nm, with an aspect ratio (L/D) of around 13–17. The mercerization of fibers with NaOH solutions influenced the crystallinity index and thermal stability of the resulting nanofibers. The fibers mercerized with NaOH solution 17.5% resulted in more crystalline nanofibers, but thermally less stable and inferior DP. The aggregation state increases with the amount of HCl introduced into the extraction, due to the decrease of surface charges (as verified by Zeta Potential analysis). However, this release presented nanofibers with better thermal stability than those whose acid hydrolysis was carried out using only H2SO4.  相似文献   

3.
Wang  Songlin  Wang  Qian  Kai  Yao 《Cellulose (London, England)》2022,29(3):1637-1646

Cellulose nanocrystals (CNCs) were first isolated from microcrystalline cellulose (MCC) by p-toluene sulfonic acid (p-TsOH) hydrolysis. Cellulose II nanocrystal (CNC II) and cellulose III nanocrystal (CNC III) were then formed by swelling the obtained cellulose I nanocrystal (CNC I) in concentrated sodium hydroxide solutions and ethylenediamine (EDA) respectively. The properties of CNC I, CNC II and CNC III were subjected to comprehensive characterization by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicated that CNC I, CNC II and CNC III obtained in this research had high crystallinity index and good thermal stability. The degradation temperatures of the resulted CNC I, CNC II and CNC III were 300 °C, 275 °C and 242 °C, respectively. No ester bonds were found in the resulting CNCs. CNCs prepared in this research also had large aspect ratio and high negative zeta potential.

  相似文献   

4.
Cellulose fibers were isolated from a kenaf bast fiber using a electron beam irradiation (EBI) treatment. The methods of isolation were based on a hot water treatment after EBI and two-step bleaching processes. FT-IR spectroscopy demonstrated that the content of lignin and hemicellulose in the bleached cellulose fibers treated with various EBI doses decreased with increasing doses of EBI. Specifically, the lignin in the bleached cellulose fibers treated at 300 kGy, was almost completely removed. Moreover, XRD analyses showed that the bleached cellulose fibers treated at 300 kGy presented the highest crystallinity of all the samples treated with EBI. Finally, the morphology of the bleached fiber was characterized by SEM imagery, and the studies showed that the separated degree of bleached cellulose fibers treated with various EBI doses increased with an increase of EBI dose, and the bleached cellulose fibers obtained by EBI treatment at 300 kGy was separated more uniformly than the bleached cellulose fiber obtained by alkali cooking with non-irradiated kenaf fiber.  相似文献   

5.
Alfa stems are rich in cellulose and they are an inexpensive, easily renewable source of natural fibers with the potential for polymer reinforcement. However, large amounts of non-cellulosic materials, surface impurities and low degradation temperature make natural fibers less attractive for reinforcement of polymeric materials, unless they can be modified in a proper way. In this paper, Alfa stems were treated with NaOH solution with two different concentrations (1 and 5 wt%). Raw and treated stems were crushed to obtain fibers. Stems and fibers were characterized by scanning electron microscopy (SEM) and optical microscopy, respectively. Their crystallinity index was determined by X-ray diffraction, thermal stability by thermogravimetry and structural change by FT-IR and 13C NMR spectroscopy. Comparison and analysis of results confirmed some thermal, structural and morphological changes of the fibers after treatment due to removal of some non-crystalline constituents from the plant. SEM showed rougher surfaces after alkalization. FT-IR and 13C NMR showed a gradual improvement in cellulose level by alkali treatment with increasing NaOH concentration. The crystallinity index and thermal stability of treated Alfa fibers were also found to be improved.  相似文献   

6.
Cellulose nanocrystals were prepared from cotton fibers by a two-stage method involving ionic liquid swelling treatment followed by hydrolysis under mild acid conditions. Controlled swelling of cellulosic fibers was achieved in 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) at 80 °C, while avoiding extensive dissolution of crystalline regions. Since the accessibility of the substrate was considerably enhanced, the hydrolysis occurred even under mild conditions, using up to 60 times less sulfuric acid than the traditional extraction methods based on concentrated sulfuric acid. The effects of process parameters on nanoparticle morphology, composition and stability were investigated. The individual rod-like nanocrystals, observed under field emission gun scanning electron microscopy, exhibited an average diameter of around 20 nm and a length ranging from 150 to 350 nm. According to X-ray photoelectron spectroscopy and thermogravimetric analysis, the surface of the so-extracted nanoparticles proved to be deprived of contaminating sulfate groups leading to significantly higher thermal stability with respect to cellulose nanocrystals extracted by traditional method in concentrated sulfuric acid.  相似文献   

7.
Cellulose nanowhiskers were extracted from the spines of Mandacaru (Cereus jamacaru DC.), a cactus native to the Caatinga biome of northeastern Brazil, using sulfuric acid hydrolysis preceded by alkaline treatment and bleaching. Results showed that three bleaching steps were required to remove most of the non-cellulosic constituents of the spines that yielded 77.4% cellulose. Nanowhiskers size decreased from about 400 to 260 nm when extraction time varied from 60 to 120 min, this was also evidenced by X-ray diffraction. Alkaline treated and bleached samples had lower thermal stability as compared to untreated spines due to removal of lignin and increased surface area. The amount of time samples were treated with sulfuric acid influenced the thermal stability and consequently the degree of crystallinity of the nanowhiskers. Cellulose nanowhiskers were obtained from Mandacaru spines providing a new renewable source of reinforcement with potential applications in nanocomposites.  相似文献   

8.
Three different pre-acid-hydrolysis treatments were used to treat coconut husk fibers for preparing cellulose nanowhiskers by sulfuric acid hydrolysis. The effects of those treatments on the morphology and properties of the nanowhiskers were investigated. FTIR was employed to evaluate the change of chemical composition due to different pre-acid-hydrolysis treatments. AFM images showed that there was no significant difference of size of nanowhiskers obtained by different pre-acid-hydrolysis treatment, 2–3 nm of average thickness. The thermal decomposition of nanowhiskers shifted to higher temperatures with removal of hemicellulose and lignin.  相似文献   

9.
Surface treatment of linear low density polyethylene and low density polyethylene blends is investigated herein using nitric acid, sulfuric acid, and chromic acid. These chemical treatments not only make the surface rough but also introduce polar groups. A new method, “sulfonic groups index” (SI) is employed to quantify the newly generated polar groups in the wavenumber of 1,250–840 cm−1 in the Fourier transform infrared spectra. The SI values effectively indicate that the most polar groups are incorporated into the chromic acid-etched samples among the three inorganic acids, which is also confirmed by scanning electron microscopy and roughness tests. Besides, annealing treatment can enhance the crystallinity X c of all etched samples which plays a predominant role in the increase of roughness within 2 h. As etching time increases, chain scission and destruction of amorphous parts happen and roughness increases a lot for chromic acid-treated samples, but for sulfuric acid- and nitric acid-treated samples, the destruction of amorphous parts may not happen so that the roughness has not many changes.  相似文献   

10.
A facile and economic electrospinning approach has been developed for the synthesis of zinc titanate-rutile composite fibers as a nanofibrous mat at the first time. The composite fibers with different morphologies were obtained by calcination of the PVP/Ti(OC4H9)4–Zn(CH3COO)2 fibers. The reaction mechanism was characterized by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) and Fourier transform infraction spectroscopy (FT-IR) spectra techniques. According to the thermal analysis, the phase of ZnTiO3 occurred at 450 °C and it decomposed at 885 °C. FE-SEM micrographs indicated that the as-spun fibers were round and had a rather uniform and smooth surface with the diameters in the range of 300–800 nm over its length. Its morphology is greatly affected by the calcination temperatures.  相似文献   

11.
Mechanical, thermal and oxygen barrier properties of regenerated cellulose films prepared from aqueous cellulose/alkali/urea solutions can be markedly improved by controlling the drying conditions of the films. By pre-pressing followed by vacuum drying under compression, the tensile strength, Young’s modulus, coefficient of thermal expansion and oxygen permeability of the dried films reached 263 MPa, 7.3 GPa, 10.3 ppm K−1 and 0.0007 ml μm m−2 day−1 kPa−1, respectively. Thus, films produced in this way show the highest performance of regenerated cellulose films with no orientation of cellulose chains reported to date. These improved properties are accompanied by a clear increase in cellulose II crystallinity from 50 to 62% during pre-pressing/press-vacuum drying process. At the same time, the film density increased from 1.45 to 1.57 g cm−3, and the moisture content under equilibrium conditions decreased from 14.1 to 9.8%. Hence, the aqueous alkali/urea solvent system has potential applications in producing new and environmentally friendly cellulose films with high performances through control of the drying conditions.  相似文献   

12.
Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 °C. The previously characterized mercerized pulps were hydrolyzed (100 °C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, α-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 °C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.  相似文献   

13.
Cellulose nanocrystals (CNC) was obtained from bamboo pulp via ultrasonication-assisted FeCl3-catalyzed hydrolysis process, with parameters optimized by response surface methodology. The optimal parameters were reaction temperature: 107 °C, reaction time: 58 min, ultrasonication time: 186 min. The morphological, crystal structural, chemical structural and thermal features of the prepared cellulose nanocrystals were analyzed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Fourier transfer infrared (FTIR) and thermogravimetric analysis. The results showed that the cellulose nanocrystals formed an interconnected network structure and CNC was rod-like with the length of 100–200 nm and the width of 10–20 nm. XRD result revealed that, compared with cellulose pulp, the crystallinity index of CNC increased from 69.5 to 79.4 %, while the cellulose I crystal structure remained. FTIR analysis demonstrated that CNC had the similar chemical structures to that of cellulose pulp, which indicated that the chemical structures of CNC remained unchanged in the presence of FeCl3-catalyzed hydrolysis process and ultrasonication treatment. Thermogravimetric analysis revealed that the resulting CNC exhibited relatively high thermal stability. The research shows that ultrasonication-assisted FeCl3-catalyzed hydrolysis could be a highly efficient method for preparing CNC.  相似文献   

14.
Polyaniline (PANI)/carbon nanotubes (CNTs) composite electrode material was prepared by in situ chemical polymerization. The structure and morphology of PANI/CNTs composite are characterized by Fourier infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. It has been found that a flocculent PANI was uniformly deposited on the surface of CNTs. The supercapacitive behaviors of the PANI/CNTs composite materials are investigated with cyclic voltammetry, galvanostatic charge/discharge, impedance, and cycle life measurements. The results show that the PANI/CNTs composite electrodes have higher specific capacitances than CNT electrodes and better stability than the conducting polymers. The capacitance of PANI/CNTs composite electrode is as high as 837.6 F g−1 measured by cyclic voltammetry at 1 mV s−1. Besides, the capacitance retention of coin supercapacitors remained 68.0% after 3,000 cycles.  相似文献   

15.
Stable aqueous suspensions of cellulose nano-crystals (CNCs) were fabricated from both native and mercerized cotton fibers by sulfuric acid hydrolysis, followed by high-pressure homogenization. Fourier transform infrared spectrometry and wide-angle X-ray diffraction data showed that the fibers had been transformed from cellulose I (native) to cellulose II (mercerized) crystal structure, and these polymorphs were retained in the nanocrystals, giving CNC-I and CNC-II. Transmission electron microscopy showed rod-like crystal morphology for both types of crystals under the given processing conditions with CNC-II having similar width but reduced length. Freeze-dried agglomerates of CNC-II had a much higher bulk density than that of CNC-I. Thermo-gravimetric analysis showed that CNC-II had better thermal stability. The storage moduli of CNC-II suspensions at all temperatures were substantially larger than those of CNC-I suspensions at the same concentration level. CNC-II suspensions and gels were more stable in response to temperature increases. Films of CNC and Poly(ethylene oxide) were tested. Both CNC-I/PEO and CNC-II/PEO composites showed increased tensile strength and elongation at break compared to pure PEO. However, composites with CNC-II had higher strength and elongation than composites with CNC-I.  相似文献   

16.
王宗宝 《高分子科学》2016,34(11):1373-1385
Ultra-high molecular weight polyethylene (UHMWPE)/chitin nanocrystal (CNC) fibers were prepared. Compared with the pure UHMWPE fibers, the ultimate tensile strength and Young’s modulus of UHMWPE/CNC fibers are improved by 15.7% and 49.6%, respectively, with the addition of chitin nanocrystals (CNCs) of 1 wt%. The melting temperature (T m) of UHMWPE/CNC fibers was higher than that of pure UHMWPE fibers. Pure UHMWPE fibers and UHMWPE/CNC fibers were characterized with respect to crystallinity, orientation and kebab structure by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM). It is found that the CNCs act as the shish structure in UHMWPE/CNC fibers and the kebab crystals are grown around the CNCs. There was almost no difference between pure UHMWPE fibers and UHMWPE/CNC fibers in orientation. But the degree of crystallinity of various stages of UHMWPE/CNC fibers was respectively higher than the corresponding stage of pure UHMWPE fibers. Moreover, the addition of 1 wt% CNCs improved the thickness of kebab crystals and accelerated the transformation of kebab to shish.  相似文献   

17.
Based on polyethylene glycol modified single-walled carbon nanotubes, a novel sol–gel fiber coating was prepared and applied to the headspace microextraction of chlorinated organic carriers (COCs) in textiles by gas chromatography-electron capture detection. The preparation of polyethylene glycol modified single-walled carbon nanotubes and the sol–gel fiber coating process was stated and confirmed by infrared spectra, Raman spectroscopy, and scanning electron microscopy. Several parameters affecting headspace microextraction, including extraction temperature, extraction time, salting-out effect, and desorption time, were optimized by detecting 11 COCs in simulative sweat samples. Compared with the commercial solid-phase microextraction fibers, the sol–gel polyethylene glycol modified single-walled carbon nanotubes fiber showed higher extraction efficiency, better thermal stability, and longer life span. The method detection limits for COCs were in the range from 0.02 to 7.5 ng L−1 (S/N = 3). The linearity of the developed method varied from 0.001 to 50 μg L−1 for all analytes, with coefficients of correlation greater than 0.974. The developed method was successfully applied to the analysis of trace COCs in textiles, the recoveries of the analytes indicated that the developed method was considerably useful for the determination of COCs in ecological textile samples.  相似文献   

18.
Barium-ferrite-containing glass ceramic fibers were successfully prepared by the combination of a sol–gel process and electrospinning technique using basic iron formate, barium acetate and boric acid as the starting materials. After leaching of barium borate matrix, pure phase BaFe12O19 fibers were obtained. The relationship of aged time and viscosity of the precursor solution was studied and the results showed that the viscosity corresponding to the spinnable state was 1–4 Pa s. The morphology, structure and magnetic properties of the obtained fibers were characterized with scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, thermo gravimetric analysis–differential scanning calorimetry, vibrating sample magnetometer. The X-ray diffraction results indicate that only the M-type Ba-ferrite and Ba-borate exist. The fibers had rough surface and hollow structure with the diameter no more than 1 μm. The fibers were composed of 40 nm BaFe12O19 nanoparticles embedded in the borate matrix. The coercivity and saturation magnetization of the synthesized fibers were 4,106.9 Oe and 17.8 emu/g, respectively.  相似文献   

19.
Agriculture biomass is an alternative possible solution for the extraction of cellulose, compared to the classical soft and hard wood. However, the valorization of cellulose is challenging for the researchers as it involves multiple steps. In the present study, the raw fibers of flax, hemp, and milkweed stem fibers were purified in single step using hydrogen peroxide in water. By this method authors successfully extracted the purified cellulose fibers without damaging the fiber length. The purified fibers were characterized to understand the thermal, functional, crystalline, and morphological properties by thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The FTIR results showed the effective removal of lignin and significant improvement in thermal stability was observed by TGA. Evidently, the SEM results showed significant improvement in the morphology compared to that of the raw fibers. XRD results showed that the treatment does not affect the crystallinity of the fibers.  相似文献   

20.
Copper indium diselenide (CuInSe2; CIS) layer was electrolytically plated from an aqueous medium at room temperature onto electroless nickel deposited on flexible plastic (Kapton). The CIS depositions were carried out under constant deposition potentials (−0.5 to −1.1 V vs. Ag/AgCl) and at various electrolyte flow rates (0.3 to 1.5 ml/s) under constant applied current. The resulting thin films were characterized using atomic force microscopy, energy-dispersive X-ray spectroscopy, environmental scanning electron microscopy, and X-ray diffraction. The surface morphology and the atomic composition of the deposited CIS film were found to be influenced by the deposition potential under potential control and the electrolyte recirculation rate under current control. Low electrolyte flow rates under constant current control and high cathodic deposition potential under voltage control favor the deposition of indium. CIS films of uniform deposit, smoother surfaces, and with better adhesion properties are favored by moderate electrolyte recirculation rate. At a current density of 0.6 mA/cm2, the electrolyte recirculation rate required to achieve ideal CIS atomic composition was found to be 1.0 ml/s in such a setting. The crystallinity of the film improved after annealing for 2 h at 390 °C under argon atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号