首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate constants at which oxidizing and reducing radicals react with the dinuclear iron(III) complex Fe2O(ttha)2− were measured in neutral aqueous solution. The rate constants for reduction of the complex by ·CO2.− CH3.CHOH and O2.− were found to be comparable with rate constants previously measured in mononuclear iron(III) polyaminocarboxylate systems. Fe2O(ttha)2− reacts slowly with O2.− (k8 = (1.2 ± 0.2) × 104 dm3 mol−1 s−1) and, hence, is a relatively poor catalyst for the dismutation of superoxide radical. The hydrated electron reduces the complex at a diffusion-controlled rate in a process which consumes one proton: eaq + Fe2O(ttha)2− → Fe2III,IIO(ttha)3− The reduction by carbon-centered radicals produces a (III,II) mixed-valence complex with an absorption spectrum different from that of the Fe2(II,III) species produced from reduction by the hydrated electron. The oxidizing radicals .OH and ·CO3 appear to act as reductants of the complex via ligand oxidation rather than by oxidation of the Fe2IIIO core to Fe2III,IVO. In the former case ligand attack appears to occur mainly at the methylene carbon of a glycinate group. The decarboxylation product, CO2, was detected by its aquation reaction in the presence of a pH sensitive dye, bromthymol blue.  相似文献   

2.
Ohura H  Imato T  Yamasaki S 《Talanta》1999,49(5):1383-1015
A rapid potentiometric flow injection technique for the simultaneous determination of oxychlorine species such as ClO3–ClO2 and ClO3–HClO has been developed, using both a redox electrode detector and a Fe(III)–Fe(II) potential buffer solution containing chloride. The analytical method is based on the detection of a large transient potential change of the redox electrode due to chlorine generated via the reaction of the oxychlorine species with chloride in the potential buffer solution. The sensitivities to HClO and ClO2 obtained by the transient potential change were enhanced 700–800-fold over that using an equilibrium potential. The detection limit of the present method for HClO and ClO2 is as low as 5×10−8 M with use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 0.5 M H2SO4. On the other hand, sensitivity to ClO3 was low when a potential buffer solution containing 0.5 M H2SO4 was used, but could be increased largely by increasing the acidity of the potential buffer. The detection limit for ClO3 was 2×10−6 M with the use of a 5×10−4 M Fe(III)–1×10−3 M Fe(II) buffer containing 0.3 M KCl and 9 M H2SO4. By utilizing the difference in reactivity of oxychlorine species with chloride in the potential buffer, a simultaneous determination method for a mixed solution of ClO3–ClO2 or ClO3–HClO was designed to detect, in a timely manner, a transient potential change with the use of two streams of potential buffers which contain different concentrations of sulfuric acid. Analytical concentration ranges of oxychlorine species were 2×10−5–2×10−4 M for ClO3, and 1×10−6–1×10−5 M for HClO and ClO2. The reproducibility of the present method was in the range 1.5–2.3%. The reaction mechanism for the transient potential change used in the present method is also discussed, based on the results of batchwise experiments. The simultaneous determination method was applied to the determination of oxychlorine species in a tap water sample, and was found to provide an analytical result for HClO, which was in good agreement with that obtained by the o-tolidine method and to provide a good recovery for ClO3 added to the sample.  相似文献   

3.
Pulse radiolysis technique has been employed to study the reactions of oxidizing (OH, N3) and reducing radicals (eaq, CO2√−, acetone ketyl radical) with 2-hydroxy-3-methoxybenzaldehyde (o-vanillin) at different pH. Hydroxyl radicals react mostly by addition reaction forming radical adducts (λmax=420 nm) and the oxidation is only a minor process even in the alkaline region. The reaction with azide radicals produced phenoxyl radicals (λmax=340 nm), which are formed on fast deprotonation of solute radical cation. Using PMZ√+/PMZ and ABTS√−/ABTS2− as the reference couple, different methods are employed to determine the one-electron reduction potential of o-vanillin and the average value is estimated to be 1.076±0.004 V vs. NHE at pH 6. The phenoxyl radicals of o-vanillin were able to oxidize ABTS2− quantitatively. The eaq is observed to react with o-vanillin with rate constant value of 2×1010 dm3 mol−1 s−1. CO2√− and acetone ketyl radical are also observed to react with o-vanillin by electron transfer mechanism and showed the formation of transient absorption bands with λmax at 350 and 390 nm at pH 4.5 and 9.7, respectively. The pKa of the one-electron reduced species was determined to be 8.1. The results indicate that the aldehydic group is the most preferred site for electron addition.  相似文献   

4.
The tetrahydroxoargentate(III) ion, Ag(OH)4, is rapidly reduced by thiourea (tu) in accordance with the three term rate law RATE = {k1+(k2+k3[OH])[tu]}[AgIII] where k1 = 1.08 s−1, k2 = 1.46 x 103 M−1 s−1, and k3 = 2.02 x 103 M−2 s−1. The k1 path occurs via the rate-determining aquation of Ag(OH)4 while the other two paths involve axial attack of thiourea on silver. The higher values of k2 and k3 compared to the ethylenediamine reaction, which obeys the same rate law, is a reflection of the greater nucleophilicity of tu.

Following the redox reaction, solutions become brown in a reaction that obeys pseudo-first-order kinetics. Similar behaviour is observed when tu is replaced by Na2S or thio-acetamide and when AgI reacts with any of these sulphur containing compounds. We attribute this process to the AgI promoted formation of sulphide species which eventually precipitate as Ag2S.  相似文献   


5.
The reaction of RuII(PPh3)3X2 (X = Cl, Br) with o-(OH)C6H4C(H)=N-CH2C6H5 (HL) under aerobic conditions affords RuII(L)2(PPh3)2, 1, in which both the ligands (L) are bound to the metal center at the phenolic oxygen (deprotonated) and azomethine nitrogen and RuIII(L1)(L2)(PPh3), 2, in which one L is in bidentate N,O form like in complex 1 and the other ligand is in tridentate C,N,O mode where cyclometallation takes place from the ortho carbon atom (deprotonated) of the benzyl amine fragment. The complex 1 is unstable in solution, and undergoes spontaneous oxidative internal transformation to complex 2. In solid state upon heating, 1 initially converts to 2 quantitatively and further heating causes the rearrangement of complex 2 to the stable RuL3 complex. The presence of symmetry in the diamagnetic, electrically neutral complex 1 is confirmed by 1H and 31P NMR spectroscopy. It exhibits an RuII → L, MLCT transition at 460 nm and a ligand based transition at 340 nm. The complex 1 undergoes quasi-reversible ruthenium(II)—ruthenium(III) oxidation at 1.27V vs. SCE. The one-electron paramagnetic cyclometallated ruthenium(III) complex 2 displays an L → RuIII, LMCT transition at 658 nm. The ligand based transition is observed to take place at 343 nm. The complex 2 shows reversible ruthenium(III)—ruthenium(IV) oxidation at 0.875V and irreversible ruthenium(III)—ruthenium(II) reduction at −0.68V vs. SCE. It exhibits a rhombic EPR spectrum, that has been analysed to furnish values of axial (6560 cm−1) and rhombic (5630 cm−1) distortion parameters as well as the energies of the two expected ligand field transitions (3877 cm−1 and 9540 cm−1) within the t2 shell. One of the transitions has been experimentally observed in the predicted region (9090 cm−1). The first order rate constants at different temperatures and the activation parameter ΔH#S# values of the conversion process of 1 → 2 have been determined spectrophotometrically in chloroform solution.  相似文献   

6.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

7.
Recent developments in the field of microbiology and research on the origin of life have suggested a possible significant role for reduced, inorganic forms of phosphorus (P) such as phosphite [HPO32−, P(+III)] and hypophosphite [H2PO2, P(+I)] in the biogeochemical cycling of P. New, robust methods are required for the detection of reduced P compounds in order to confirm the importance of these species in the overall cycling of P in the environment. To this end, we have developed new batch and flow injection (FI) methods for the determination of P(+III) in aqueous solutions. The batch method is based on the reaction of P(+III) with a mixed-iodide solution containing tri-iodide (I3) and penta-iodide (I5). The oxidation of P(+III) consumes free I3 and I5 in solution. The remaining I3 and I5 subunits are then allowed to react with the amylose content in starch to form a blue complex, which has a λmax of 580 nm. The measurement of this blue complex is directly correlated with the concentration of P(+III). The on-line FI method employs the same reaction between P(+III) and mixed-iodide producing phosphate [P(+V)] that is determined spectrophotometrically by the molybdenum blue method employing ascorbic acid at a λmax of 710 nm. The linear range for both the batch and FI determination of P(+III) was 1.0–50 μM with detection limits of 0.70 and 0.36 μM, respectively. Interference studies for the batch method show that arsenite [As(+III)] and sulfite [S(+IV)] can also be determined by this technique; however, these interferences can be circumvented by oxidizing As(+III) and S(+IV) using KMnO4 which is an ineffective oxidant for P(+III). Both methods were applied to P(+III) determinations in ultra-pure water and simulated creek water. Results and analytical figures of merit are reported and future work is considered.  相似文献   

8.
Fang Guozhen  Luo Jikuen 《Talanta》1992,39(12):1579-1582
This paper shows that the sensitivity of the Cr(III, VI)—Chrome Azurol S (CAS)-cetylpyridinium bromide (CPB)—hydroxylamine hydrochloride system can be increased and the wavelength of maximum absorption slightly shifted by addition of zinc(II) and that the analytical data are practically identical for both Cr(III) and Cr(VI), indicating that under the conditions used both initial oxidation states of chromium yield the same final oxidation state, Cr(III). On the basis of the Cr(III, VI)—CAS—CPB—NH2OH·HCl—Zn systems a new, highly sensitive and selective method for spectrophotometric determination of microamounts of Cr(III, VI) has been developed, with molar absorptivity of 1.27 × 105 1. mole−1 . cm−1 for the complex at 620 nm and linear calibration up to 0.4 μg/ml chromium. Various foreign ions do not interfere. The method can be applied to direct determination of chromium in steels.  相似文献   

9.
Co(tptn)3+ and Co(tpen)3+ (where tptnN,N,N′,N′-tetrakis(2-pyridylmethyl)-1,3-propanediamine and tpen N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine) are demonstrated to have a similar photosensitization capacity to other caged Co(III) complexes such as Co(sepulchrate)3+. In oxygen-saturated aqueous solutions at pH 4.0, a photoassisted oxidation of I to I3 by O2 is obtained with a turnover number of greater than 12 for both Co(tptn)3+ and Co(tpen)3+. Quantum yields for the formation of I3 are 8.7x 10−4 and 1.6x 10−2 respectively at pH 4.0 in solution with a constant supply of air.  相似文献   

10.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

11.
Equilibria between aluminium(III), pyrocatechol (1,2-dihydroxybenzene, H2L) and OH were studied in 0.6 M Na(Cl) medium at 25°C. The measurements were performed as emf titrations (glass electrode) within the limits 1.5 ≤ − log[H+] ≤ 9; 0.0005 ≤ B ≤ 0.015 M; 0.006 ≤ C ≤ 0.03 M and 2 ≤ C/B ≤ 30 (B and C stand for the total concentrations of aluminium(III) and pyrocatechol respectively). All data can be explained with a main series of complexes: A1L+, log β−2,1,1 = − 6.337 ± 0.005; A1L2, log β−4,1,2 = −15.44 ± 0.017 and A1L33−, log β−6,1,3 = − 28.62 ± 0.024 together with two minor species: Al(OH)L22−, log β−5,1,2 = − 23.45 ± 0.079 and Al3(OH)3L3, log β−9,3,3 = − 29.91 ± 0.066. Of the two, the latter probably is a type of average composition complex principally occurring at low C/B quotients. The first acidity constant for pyrocatechol as determined in separate experiments is log β−1,0,1 = − 9.198 ± 0.001. The standard deviations given are 3σ(log β p,q,r). Data were analyzed with the least squares computer program LETAGROPVRID. In a model calculation using kaolinite as solid phase, we compared the complexation ability of this system with that of the system Al3+-OH-salicylic acid, reported earlier in this series.  相似文献   

12.
Reactions of OH radicals and some one-electron oxidants with 2-aminopyridine (2-AmPy) and 3-aminopyridine (3-AmPy) were studied in aqueous solutions using pulse radiolysis technique. The OH adduct of 2-AmPy at pH 9 has an absorption maximum at 360 nm along with a weak absorption band in the visible region and was found to be reactive with oxygen. The rate constant for its reaction with O2 was determined to be 1.0×108 dm3 mol−1 s−1. At pH 4 also, the OH adduct of 2-AmPy has an absorption band at 360 nm. However, there are differences in the absorption at other wavelengths. From the plot of ΔOD vs. pH at 340 nm, the pKa of the OH adduct was determined to be 6.5. Among the specific oxidants, only SO4−√ radicals were able to oxidize 2-AmPy. In the case of 3-aminopyridine (3-AmPy), the transient species formed by OH radical reaction at pH 9 has an absorption maximum at 410 nm with shoulder bands on both the sides. Its absorption spectrum at pH 4 was different indicating the existence of a pK value for the OH adduct. pKa of 3-AmPy-OH radical adduct species was evaluated to be 5.7. This adduct species was also found to be reactive with oxygen (k=7.6×106 dm3 mol−1 s−1). Specific one-electron oxidants like N3, Br2−√ C2−√ and SO4−√ were able to oxidize 3-AmPy indicating that it is easier to oxidize 3-AmPy as compared to 2-AmPy.  相似文献   

13.
The photodegradation of carbofuran by excitation of iron(III) aquacomplexes was investigated under UV irradiation. The degradation rate was strongly influenced by the pH, and initial concentration of Fe(III). The degradation efficiency of carbofuran at the difference pH was in good agreement with the initial concentration of Fe(OH)2+ in the solution. An initial carbofuran concentration of 10 mg L−1 was completely degraded within 50 min at pH 2.8 with original Fe(III) concentration of 8 × 10−4 mol L−1. This degradation reaction was found to follow the first order kinetics law and the rate constant of 1.60 × 10−3 s−1 was observed. The decrease of TOC content was observed during the photocatalytic process and the removal percentage obtained was about 70% after 25 h. Furthermore, ammonium ion as an end-product was detected in the solution. Therefore, this process based on the catalytic reaction of Fe(II, III) is responsible for the continuous production of hydroxyl radicals in such system. A gas chromatography-mass spectrometry analysis showed the formation of four photoproducts, such as 2,2-dimethyl-2,3-dihydro-benzofuran-7-ol, etc., revealing that the carbamate branch, C-3 and C-2 positions in furan ring were attack targets of hydroxyl radicals. Based on these results, the photocatalytic system could be useful technology for the treatment and the mineralization of compounds like carbofuran.  相似文献   

14.
A novel tetranuclear terbium(III) complex [Tb4(OH)4(pybet)6(H2O)8][Tb4(OH)4(pybet)6(H2O)7 (NO3)](ClO4)14·6H2O has been synthesized and shown by X-ray crystallography to have a cubane-like Tb43-OH)42-carboxylato-O,O′)6 core. The ligand pybet is pyridinoacetate, C5H5+N-CH2CO2. Magnetic susceptibility data were measured for this Tb4 complex in the range of 2.0–320 K and in fields of 1.0 G to 50.0 kG. It is concluded that either there is very weak antiferromagnetic exchange interaction (J = −0.015 cm−1) or there is a small crystal-field splitting of the 7F6 TbIII ground state.  相似文献   

15.
The radiolytic reduction of Cr(VI) in N2O-saturated aqueous solutions has been investigated over a large range of pH by steady state radiolysis. At pH 3 in the presence of formate as scavenger for ·OH, G(−Cr(VI)) is higher than the expected yield and a strong dose rate effect is observed. The solution cannot be used for dosimetry at this pH. The proposed mechanism to explain the enhanced response and the dose rate dependence involves the reduction of the unstable radiolytically produced Cr(IV) by HCO2. At pH 9.2 the reaction between Cr(IV) and formate is absent and no dose rate effect was observed up to 70 kGy min−1, which makes this system particularly attractive as a dosimeter in the 0.1–10 kGy dose range. Radiation chemical aspects relating to the use of this system as a high-dose and high-dose rate chemical dosimeter are discussed.  相似文献   

16.
Wei Wei Zhu  Nian Bing Li  Hong Qun Luo   《Talanta》2007,72(5):1733-1737
A stannum film electrode has been developed for the simultaneous determination of trace levels of chromium(III) and cadmium(II) by differential pulse anodic stripping voltammetry (DPASV). The stannum film electrode was generated in situ by depositing simultaneously the stannum film and the metals obtained by reduction of Cd(II) and Cr(III) at −1.4 V on a glassy carbon electrode. Then, the reduced products were oxidized by scanning the potential of the electrode from −1.4 to −0.4 V using DPASV. The electrode exhibited well-defined and separated stripping signals for both metals accompanied with a low background contribution. The possible mechanism of this design was proposed. Under the optimized working conditions, the detection limit was 2.0 and 1.1 μg l−1 for Cr(III) and Cd(II) at a deposition time of 3 min. Finally, the stannum film electrode was successfully applied to the determination of Cd(II) in tap water with satisfactory results.  相似文献   

17.
The 17O and 14N paramagnetic relaxation rates and chemical shifts of glycine as well as of water, in aqueous solutions of Co(II), Cu(II), and Mn(II) were measured as a function of pH, temperature and metal ion concentration; the relaxation results were fitted to a theoretical equation linking the Swift-Connick equation to the stability constants of all major complexes in equilibrium. As a result, the stability constants of all major complexes were determined, and from the temperature-dependent measurements the thermodynamic parameters for some of these complexes were also calculated. In addition to the bidentate complexes ML+, ML2 and ML3, monodentate complexes of the type MHL2+ and M(HL)22+, mixed complexes of the type MHL2+ and MHL3 were also considered. In the case of the Cu(II)-glycine system at pH> 12 two additional species were considered, namely ML2(OH) and ML2(OH)22−, suggested by the drastic reduction of the paramagnetic broadening in that pH range.  相似文献   

18.
Bismuth as BiCl4 and BH4 ware successively retained in a column (150 mm × 4 mm, length × i.d.) packed with Amberlite IRA-410 (strong anion-exchange resin). This was followed by passage of an injected slug of hydrochloric acid resulting in bismuthine generation (BiH3). BiH3 was stripped from the eluent solution by the addition of a nitrogen flow and the bulk phases were separated in a gas–liquid separator. Finally, bismutine was atomized in a quartz tube for the subsequent detection of bismuth by atomic absorption spectrometry. Different halide complexes of bismuth (namely, BiBr4, BiI4 and BiCl4) were tested for its pre-concentration, being the chloride complexes which produced the best results. Therefore, a concentration of 0.3 mol l−1 of HCl was added to the samples and calibration solutions. A linear response was obtained between the detection limit (3σ) of 0.225 and 80 μg l−1. The R.S.D.% (n = 10) for a solution containing 50 μg l−1 of Bi was 0.85%. The tolerance of the system to interferences was evaluated by investigating the effect of the following ions: Cu2+, Co2+, Ni2+, Fe3+, Cd2+, Pb2+, Hg2+, Zn2+, and Mg2+. The most severe depression was caused by Hg2+, which at 60 mg l−1 caused a 5% depression on the signal. For the other cations, concentrations between 1000 and 10,000 mg l−1 could be tolerated. The system was applied to the determination of Bi in urine of patients under therapy with bismuth subcitrate. The recovery of spikes of 5 and 50 μg l−1 of Bi added to the samples prior to digestion with HNO3 and H2O2 was in satisfactory ranges from 95.0 to 101.0%. The concentrations of bismuth found in six selected samples using this procedure were in good agreement with those obtained by an alternative technique (ETAAS). Finally, the concentration of Bi determined in urine before and after 3 days of treatment were 1.94 ± 1.26 and 9.02 ± 5.82 μg l−1, respectively.  相似文献   

19.
The infrared spectra of solid samples of C4H7K and C4D7K have been investigated in the 4000 to 30 cm−1 range. A complete assignment of intramolecular fundamentals of C4H7 and C4D7 ions and of potassium-allyl vibrations is proposed and the intramolecular force constants are calculated. The C(CH2)32− anion has been identified spectroscopically. Structures of C3H5, C4H7 and C(CH3)32− are discussed and compared with those optimised by the MINDO/3 method.  相似文献   

20.
本文研究了Cr3+在1-丁基-3-甲基咪唑硫酸氢盐([BMIM]HSO4)电解液中的电沉积反应以及添加剂NaOAc对电镀铬的影响. 含Cr3+电解液的循环伏安结果表明,Cr(III)还原为Cr(II)的峰电位是-1.5 V (vs. Pt), 峰电位和峰电流均满足Rendle-Sevcik扩散方程,由该方程计算得到Cr3+的扩散系数为1.6 × 10-8 cm2·s-1. 铬镀层的X射线衍射和扫描电子显微镜表征结果表明镀层由纳米球状的单质铬颗粒聚集而成,其平均粒径为0.87μm. 在电解液中添加NaOAc后,Cr3+的还原峰电位正移了约0.25 V. 同时EDS结果表明,在NaOAc的作用下镀层中Cr/O摩尔比由4.48增加至6.28,这说明OAc-有利于单质铬的电沉积. 当电解液中NaOAc-[BMIM]HSO4-CrCl3-H2O的摩尔比为0.075:1:0.5:6时,所得的镀层最厚(63 μm)与电流效率最高(33.5%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号