首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Arnold JS  Cizio GT  Nguyen HM 《Organic letters》2011,13(20):5576-5579
The rhodium-catalyzed regioselective amination of tertiary allylic trichloroacetimidates with unactivated aromatic amines is a direct and efficient approach to the preparation of α,α-disubstituted allylic aryl amines in good yield and with excellent regioselectivity. This method is applicable to a variety of unactivated primary and secondary amines and allows for the preparation of reverse prenylated indoles in two steps.  相似文献   

2.
In this article, a study on reactions of tertiary allylic amines and dichlorocarbenes had been described. Tertiary allylic amines could result from an interesting de-N-allylation/formylation reaction under the treatment of dichlorocarbenes. Notably, amines containing steric substituents or electron-deficient aromatic substituents on the nitrogen will go through cyclopropanations of the carbon–carbon double bond.  相似文献   

3.
A combination of catalytic amounts of Pd (0.05 mmol) and Et3B (0.3 mmol) promotes allylic alkylation of primary and secondary aromatic and aliphatic amines (1.0 mmol) by the direct use of allylic alcohols, providing tertiary amines in excellent yields under mild conditions (room temperature approximately 50 degrees C).  相似文献   

4.
Rueping M  Vila C  Uria U 《Organic letters》2012,14(3):768-771
A direct catalytic azidation of primary, secondary, and tertiary allylic alcohols has been developed. This new azidation reaction affords the corresponding allylic azides in high to excellent yields and regioselectivities. The reaction provides straightforward access to allylic azides that are valuable intermediates in organic synthesis, including the preparation of primary amines or 1,2,3-triazole derivatives.  相似文献   

5.
Tertiary allylic amines react with butadiene in the presence of palladium(O) with cleavage of the carbon-nitrogen bond of the allylic amine and formation of the unsaturated tertiary amine 4.  相似文献   

6.
The streamlined catalytic access to enantiopure allylic amines as valuable precursors towards chiral β‐ and γ‐aminoalcohols as well as α‐ and β‐aminoacids is desirable for industrial purposes. In this article an enantioselective method is described that transforms achiral allylic alcohols and N‐tosylisocyanate in a single step into highly enantioenriched N‐tosyl protected allylic amines via an allylic carbamate intermediate. The latter is likely to undergo a cyclisation‐induced [3,3]‐rearrangement catalysed by a planar chiral pentaphenylferrocene palladacycle in cooperation with a tertiary amine base. The otherwise often indispensable activation of palladacycle catalysts by a silver salt is not required in the present case and there is also no need for an inert gas atmosphere. To further improve the synthetic value, the rearrangement was used to form dimethylaminosulfonyl‐protected allylic amines, which can be deprotected under non‐reductive conditions.  相似文献   

7.
Photolysis of chromium carbene complexes in the presence of tertiary allylic amines resulted in a zwitterionic aza Cope rearrangement to produce unsaturated lactams in fair yield.  相似文献   

8.
Diem T.H. Phan  Vy M. Dong 《Tetrahedron》2013,69(27-28):5726-5731
Herein we report a silver-catalyzed ring-opening of cyclopropenes by addition of amines. This transformation is thought to occur via an argentocarbenium intermediate and affords tertiary α-branched allylic amines in good yields and high regioselectivity. The protocol applies to various primary and secondary amines, as well as sterically hindered cyclopropenes. Friedel–Crafts cyclization of the cationic intermediate occurs as a competitive pathway to form methyl-indene.  相似文献   

9.
The ammonium-directed olefinic epoxidations of a range of differentially N-substituted cyclic allylic and homoallylic amines (derived from cyclopentene, cyclohexene, and cycloheptene) have been investigated, and the reaction kinetics have been analyzed. The results of these studies suggest that both the ring size and the identity of the substituents on nitrogen are important in determining both the overall rate and the stereochemical outcome of the epoxidation reaction. In general, secondary amines or tertiary amines with nonsterically demanding substituents on nitrogen are superior to tertiary amines with sterically demanding substituents on nitrogen in their ability to promote the oxidation reaction. Furthermore, in all cases examined, the ability of the (in situ formed) ammonium substituent to direct the stereochemical course of the epoxidation reaction is either comparable or superior to that of the analogous hydroxyl substituent. Much slower rates of ring-opening of the intermediate epoxides are observed in cyclopentene-derived and cycloheptene-derived allylic amines as compared with their cyclohexene-derived allylic and homoallylic amine counterparts, allowing for isolation of these intermediates in both of the former cases.  相似文献   

10.
Diene allylic tertiary amines were substituted with Grignard reagents in the presence of lithium tetrachlorocuprate and alkyl chloroformates. According to the experimental condition employed, this reaction afforded exclusively δ-1 V-alkylation products.  相似文献   

11.
We have developed a catalytic allylic amination involving tertiary aminoesters and allylcarbonates, which is the first example of the use of tertiary amines as intermolecular nucleophiles in metal-catalyzed allylic substitution chemistry. This process is employed in a tandem ammonium ylide generation/[2,3]-rearrangement reaction, which formally represents a palladium-catalyzed Stevens rearrangement. Low catalyst loadings and mild reaction conditions are compatible with an unprecedented substrate scope for the ammonium ylide functionality, and products are generated in high yields and diastereoselectivities. Mechanistic studies suggested the reversible formation of an ammonium intermediate.  相似文献   

12.
Xu S  Chen R  Qin Z  Wu G  He Z 《Organic letters》2012,14(4):996-999
An amine-catalyzed [4 + 2] annulation of Morita-Baylis-Hillman allylic acetates 2 with electron-deficient alkenes or diazenes has been developed for efficient syntheses of highly functionalized cyclohexenes, tetrahydropyridazines, and important spirocycles. This reaction unveils a new reactivity pattern of the intensely studied allylic compounds 2 acting as a C(4) synthon in Lewis base catalyzed annulation reactions and also showcases divergent catalysis between tertiary amines and phosphines.  相似文献   

13.
The preparation of allylic amines is traditionally accomplished by reactions of amines with reactive electrophiles, such as allylic halides, sulfonates, or oxyphosphonium species; such methods involve hazardous reagents, generate stoichiometric waste streams, and often suffer from side reactions (such as overalkylation). We report here the first broad‐scope nickel‐catalysed direct amination of allyl alcohols: An inexpensive NiII/Zn couple enables the allylation of primary, secondary, and electron‐deficient amines without the need for glove‐box techniques. Under mild conditions, primary and secondary aliphatic amines react smoothly with a range of allyl alcohols, giving secondary and tertiary amines efficiently. This “totally catalytic” method can also be applied to electron‐deficient nitrogen nucleophiles; the practicality of the process was demonstrated in an efficient, gram‐scale preparation of the calcium antagonist drug substance flunarizine (Sibelium®).  相似文献   

14.
The preparation of allylic amines is traditionally accomplished by reactions of amines with reactive electrophiles, such as allylic halides, sulfonates, or oxyphosphonium species; such methods involve hazardous reagents, generate stoichiometric waste streams, and often suffer from side reactions (such as overalkylation). We report here the first broad‐scope nickel‐catalysed direct amination of allyl alcohols: An inexpensive NiII/Zn couple enables the allylation of primary, secondary, and electron‐deficient amines without the need for glove‐box techniques. Under mild conditions, primary and secondary aliphatic amines react smoothly with a range of allyl alcohols, giving secondary and tertiary amines efficiently. This “totally catalytic” method can also be applied to electron‐deficient nitrogen nucleophiles; the practicality of the process was demonstrated in an efficient, gram‐scale preparation of the calcium antagonist drug substance flunarizine (Sibelium®).  相似文献   

15.
A regio‐ and enantioselective tandem reaction is reported capable of directly transforming readily accessible achiral allylic alcohols into chiral sulfonyl‐protected allylic amines. The reaction is catalyzed by the cooperative action of a chiral ferrocene palladacycle and a tertiary amine base and combines high step‐economy with operational simplicity (e.g. no need for inert‐gas atmosphere or catalyst activation). Mechanistic studies support a PdII‐catalyzed [3,3] rearrangement of allylic carbamates—generated in situ from the allylic alcohol and an isocyanate—as the key step, which is followed by a decarboxylation.  相似文献   

16.
Wipf P  Stephenson CR 《Organic letters》2003,5(14):2449-2452
[reaction: see text] Hydrozirconation of alkynes followed by in situ transmetalation to dimethylzinc and 1,2-addition to activated ketones and N-diphenylphosphinoylimines leads to tertiary allylic alcohols and amines in high overall yield. With 8-phenylmenthol as the chiral auxiliary, si-face attack proceeds in good to excellent diastereoselectivities.  相似文献   

17.
Aggarwal VK  Fang GY  Meek G 《Organic letters》2003,5(23):4417-4420
[reaction: see text] Cyclopropanation of allylic tertiary amines using the Simmons-Smith reagent has been achieved by employing chelating groups in close proximity to the amine. The chelating groups promote cyclopropanation at the expense of N-ylide formation. Using pseudoephedrine as the chelating group, high diastereoselectivity is observed.  相似文献   

18.
A novel application of the Grubbs carbene complex has been discovered. The first examples of the catalytic deprotection of allylic amines with reagents other than palladium catalysts have been achieved through Grubbs carbene mediated reaction. Significantly, the catalytic system directs the reaction toward the selective deprotection of allylic amines (secondary as well as tertiary) in the presence of allylic ethers. A variety of substrates, including enantiomerically pure multifunctional piperidines, are also usable. The new method is more convenient, chemoselective, and operationally simple than the palladium-catalyzed method. The current mechanistic hypothesis invokes a nitrogen-assisted ruthenium-catalyzed isomerization, followed by hydrolysis of the enamine intermediate. We believe that the reactive species involved in the reaction may be an Rubond;H species rather than the Grubbs carbene itself. Thus, the isomerization may occur according to the hydride mechanism. The synthetic utility of this ruthenium-catalyzed allyl cleavage is illustrated by the preparation of indolizidine-type alkaloids.  相似文献   

19.
Zinc oxide (ZnO) is a highly efficient catalyst for the acylation of a variety of alcohols, phenols and amines with acid chlorides or acid anhydrides under solvent free conditions. Primary, secondary, tertiary, allylic and benzylic alcohols, diols and phenols with electron donating or withdrawing substituents can be easily acylated in good to excellent yield.  相似文献   

20.
Intermolecular hydroaminoalkylation reactions of symmetrical and unsymmetrical alkynes with tertiary amines take place in the presence of catalytic amounts of TiBn4, Ph3C[B(C6F5)4], and a sterically demanding aminopyridinato ligand precursor. The resulting products, synthetically and pharmaceutically useful tertiary β,γ-disubstituted allylic amines, are formed in convincing yields and with excellent stereoselectivity. Particularly promising for future applications is the fact that even the industrial side product trimethylamine can be used as a substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号