首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The synthesis of Ru-based precatalysts with N-heterocyclic carbene (NHC) ligands bearing syn- and anti-methyl groups on the NHC backbone and aryl N-substituents with differing steric bulk was carried out. The catalytic behavior of the monophospine Ru precatalysts (7a, 7b, 8a, and 8b) was compared to the corresponding family of phosphine-free catalysts (9a, 9b, 10a and 10b) in the ring-closing metathesis (RCM) of olefins. These catalysts showed high efficiency in RCM reactions and the syn-isomers 7a and 9a, in particular, proved to be among the most active catalysts in the formation of tetrasubstituted olefins through RCM. DFT studies on the entire RCM catalytic cycle of hindered olefins were performed to rationalize the different behaviors of catalysts with syn- and anti-methyl groups on the NHC backbone. Theoretical results not only disclosed how NHC symmetry influences the overall activity of the catalyst, but also gave relevant and more general indications on the crucial steps of the RCM of olefins.  相似文献   

2.
Chung CK  Grubbs RH 《Organic letters》2008,10(13):2693-2696
Ruthenium olefin metathesis catalysts bearing an N-phenyl-substituted N-heterocyclic carbene (NHC) ligand that are resistant to decomposition through C-H activation have been prepared and tested in ring closing metathesis (RCM), cross metathesis (CM), and ROMP reactions. The N, N'-diphenyl-substituted NHC complex proved to be one of the most efficient catalysts in RCM to form tetrasubstituted olefins.  相似文献   

3.
New recyclable imidazolium-tagged ruthenium catalysts have been developed to perform olefin metathesis in room temperature ionic liquids (RTILs). High level of recyclability combined with a high reactivity were obtained in the ring-closing metathesis (RCM) of a variety of di- or tri-substituted and/or oxygen-containing dienes. Extremely low residual ruthenium levels were detected in the RCM products (average of 7.3 ppm per run). Several examples of olefin cross-metathesis (CM) have been also studied.  相似文献   

4.
Ru- and Mo-based catalysts can be used in ring closing metathesis (RCM) reactions to synthesise cyclic phosphines protected as their borane complexes. The compatibility of the Schrock Mo-catalyst and the N-heterocyclic carbene Ru-catalysts with this class of substrates is particularly noteworthy as asymmetric RCM (ARCM) is now emerging as a new tool for the preparation of homochiral phosphines. One of the key results is that the Mo-catalyst allows the ring closure of the unprotected diallylphenylphosphine with 95% conversion.  相似文献   

5.
Cyclic Ru‐phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring‐closing metathesis (RCM), enyne and cross‐metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring‐opening metathesis polymeriyation (ROMP) of this monomer.  相似文献   

6.
[reaction: see text] A series of ruthenium-based metathesis catalysts with N-heterocyclic carbene (NHC) ligands have been prepared in which the N-aryl groups have been changed from mesityl to mono-ortho-substituted phenyl (e.g., tolyl). These new catalysts offer an exceptional increase in activity for the formation of tetrasubstituted olefins via ring-closing metathesis (RCM), while maintaining high levels of activity in ring-closing metathesis (RCM) reactions that generate di- and trisubstituted olefins.  相似文献   

7.
Compounds 12-15, possessing two styrenes connected by a silicon linker [1,1,3,3 tetramethyl-di-siloxane], were synthesized, characterized and used as model compounds for the ring-closing metathesis (RCM) catalyzed by commercially available ruthenium catalysts 1, 2 and 3. The RCM reactions of 12 and 15 in the presence of catalysts 1 or 2 resulted exclusively in the formation of (E)-stilbenes. The RCM reactions of 13 and 14, compounds possessing alkoxide substituents in the ortho position to styrene functionality, were not observed in the presence of 2, presumably due to the formation of inactive Hoveyda type ruthenium complexes. The RCM of mixture of 12 and 15, with 2, was used for the detailed examination of the mechanism of metathesis reactions investigated in this work. They revealed that both inter- and intramolecular metathesis is possible, in this case, despite the use of siloxane linker.  相似文献   

8.
Abstract

Latent metathesis catalysts equipped with boronate esters of diols as exchangeable end-groups on their NHC ligands and an S-chelated ruthenium-benzylidene core were synthesized. The stable S-chelated ruthenium complexes underwent hydrolysis under mild acidic conditions, allowing easy exchange of terminal units by several 1,2- and 1,3-diols, without degrading the central ruthenium benzylidene. Using this strategy, we also prepared metathesis catalysts equipped with diallyl substrates at the termini that showed concentration dependency on RCM reactions. Notably, the larger dendritic catalysts were more efficient at the more dilute condition.  相似文献   

9.
An easy approach to mono- and bicyclic derivatives of 5,6-dihydro-1H-pyridine-2-thione via a one-pot ring closing metathesis (RCM) of dialkenoic amides and thionation using Lawesson’s reagent, followed by isomerization of the 3,6-dihydro-isomer (if necessary), is described. The appreciable differences in the reactivity of diallylic amides in RCM reactions are discussed.  相似文献   

10.
The preparation of new phosphonium alkylidene ruthenium metathesis catalysts containing N-heterocyclic carbenes (NHCs) that result in a preference for degenerate metathesis is described. The reaction of the catalysts with ethylene or substrates relevant to ring-closing metathesis (RCM) produced ruthenacyclobutanes that could be characterized by cryogenic NMR spectroscopy. The rate of α/β methylene exchange in ethylene-only ruthenacycles was found to vary widely between ruthenacycles, in some cases being as low as 3.97 s(-1) at -30 °C, suggesting that the NHC plays an important role in degenerative metathesis reactions. Attempts to generate RCM-relevant ruthenacycles resulted in the low-yielding formation of a previously unobserved species, which we assign to be a β-alkyl-substituted ruthenacycle. Kinetic investigations of the RCM-relevant ruthenacycles in the presence of excess ethylene revealed a large increase in the kinetic barrier of the rate-limiting dissociation of the cyclopentene RCM product compared with previously investigated catalysts. Taken together, these results shed light on the degenerate/productive selectivity differences observed for different metathesis catalysts.  相似文献   

11.
The preparation of polyethylene-oligomer (PE(olig))-supported N-heterocyclic carbene ligands (NHCs) and their Ru complexes is described. These complexes are structurally analogous to their low molecular weight counterparts and can serve as thermomorphic, recoverable/recyclable ring-closing metathesis (RCM) catalysts. Because of the insolubility of PE(olig)-supported species at 25 °C, such complexes can perform homogeneous RCM reactions at 65 °C and, upon cooling, precipitate as solids. This allows for their quantitative separation from solutions of products.  相似文献   

12.
The development of sequential ring closing metathesis (RCM)–Kharasch sequences which utilize a single precatalyst is described. In these sequences the catalysts acts in a multiple role promoting two different carbon–carbon bond-forming reactions in a sequential manner.  相似文献   

13.
A Hoveyda-type catalyst for olefin metathesis was synthesized and covalently attached via an amide bond to four different solid supports. One of these supports was a home-made hybrid silica support, where an ultra-thin copolymer of poly(styrene) and poly(acrylamide) was grafted on. The three other supports were commercially available, namely HypoGel 400, PEGA and Trisoperl. It was demonstrated that the catalysts were active in ring closing metathesis (RCM) reactions as well as in cross metathesis (CM) and ring opening metathesis (ROM) reactions, but the activity of the catalyst was highly dependent on the nature of the support.  相似文献   

14.
The reactivity of cyclohexene (CHE) over catalysts containing 0.3 wt% Pt, 0.3 wt% Re or 0.3 wt% Pt + 0.3 wt% Re supported on Na‐ and H‐mordenite has been studied in an atmospheric flow‐type reactor at a temperature range of 100–400 °C, using a flow of hydrogen (20 cm3/min). The catalysts were characterized for acid sites strength‐distribution, using desorption of ammonia in DSC. The acidity of H‐mordenite (HM) is attributed to strong acid sites, whereas the acidity of Na‐mordenite (NaM) is due to weak acid sites which are not involved in the catalytic reaction under study. The catalysts containing HM enhance the reactivity of CHE for isomorization reactions. However, the reactivity of CHE on NaM catalysts enhances only the hydrogenation and dehydrogenation reactions. Pt/HM is the most selective catalyst for isomerization of CHE, whereas Pt/NaM and PtRe/NaM catalysts are the most selective for hydrogenation and dehydrogenation reactions, respectively. The hydroisomorization of CHE seems to depend only on the acidity of the catalysts, whereas both hydrogenation and dehydrogenation reactions were controlled by metallic function of the catalysts.  相似文献   

15.
A metallodendron functionalized with dicyclohexyldiphosphino palladium complex was synthesized. The metallodendron was grafted onto core–shell superparamagnetic nanoparticles (γ‐Fe2O3/polymer, 200–500 nm) to give optimal catalytic reactivity in cross‐coupling reactions. The grafted nanoparticles were used as recoverable and reusable catalysts for Suzuki C? C cross‐coupling reactions. They showed remarkable reactivity towards iodo‐ and bromoarenes under mild conditions, and unprecedented reactivity towards chloroarenes. On completion of the catalytic reaction, the catalysts were readily recovered by using a simple magnet to attract the superparamagnetic grafted nanoparticles. Catalysts were recovered more than 25 times with almost no discernable loss of reactivity.  相似文献   

16.
A short overview on the structural design of the Hoveyda–Grubbs‐type ruthenium initiators chelated through oxygen, nitrogen or sulfur atoms is presented. Our aim was to compare and contrast O‐, N‐ and S‐chelated ruthenium complexes to better understand the impact of electron‐withdrawing and ‐donating substituents on the geometry and activity of the ruthenium complexes and to gain further insight into the transcis isomerisation process of the S‐chelated complexes. To evaluate the different effects of chelating heteroatoms and to probe electronic effects on sulfur‐ and nitrogen‐chelated latent catalysts, we synthesised a series of novel complexes. These catalysts were compared against two well‐known oxygen‐chelated initiators and a sulfoxide‐chelated complex. The structures of the new complexes have been determined by single‐crystal X‐ray diffraction and analysed to search for correlations between the structural features and activity. The replacement of the oxygen‐chelating atom by a sulfur or nitrogen atom resulted in catalysts that were inert at room temperature for typical ring‐closing metathesis (RCM) and cross‐metathesis reactions and showed catalytic activity only at higher temperatures. Furthermore, one nitrogen‐chelated initiator demonstrated thermo‐switchable behaviour in RCM reactions, similar to its sulfur‐chelated counterparts.  相似文献   

17.
The preparation of several organic-inorganic hybrid materials by sol-gel process derived from Hoveyda-type monomers is described. One of them presents a nitro group at the para position with respect to the alkoxy moiety. These materials were treated with Grubbs catalysts to generate the corresponding Hoveyda-Grubbs carbene ruthenium complexes covalently bonded to the silica matrix, which were tested as recyclable catalysts for diene and enyne RCM. Electronic effects of the nitro group resulted in enhanced activity of the catalyst. Whereas the recyclability decreased in RCM of dienes, the presence of this electron-withdrawing group was highly advantageous for the RCM of enynes, the reusability being greatly improved.  相似文献   

18.
Liu G  Zhang J  Wu B  Wang J 《Organic letters》2007,9(21):4263-4266
Ruthenium carbene complexes 9 with a closo-1,2-C(2)B(10)H(11) tag and 10 with an ionic [nido-7,8-C(2)B(9)H(11)](-) tag were synthesized. Both 9 and 10 are highly reactive catalysts for olefin metathesis reactions. Importantly, 10 is a robust and recyclable anion-appended catalyst that was suitable for noncovalent binding with many cationic resins. At least ten recycles were achieved for RCM of the selected substrate using 10 as the catalyst in ionic liquids.  相似文献   

19.
Phosphine ligands bearing an imidazolium fragment were easily prepared by one-step radical chain addition of secondary phosphines to allyl or vinyl imidazolium salts. These ligands were used to prepare new ionophilic second generation Grubbs-type catalysts. The catalyst immobilized in 1-butyl-3-methyl imidazolium ILs shows good catalytic activity in RCM reactions of several substrates and, depending on the media employed, is stable up to eight cycles.  相似文献   

20.
Synthesis of new type of the Hoveyda–Grubbs catalysts containing modified N-heterocyclic carbene ligands is described herein. New catalysts bear different in size polyether clamp embracing N,N′-2,4-dimethylphenyl substituents in N-heterocyclic carbene. New complexes were tested in model RCM, enyne and CM reactions. They showed comparable activity to that of commercially available Grubbs second generation and Hoveyda–Grubbs second generation complexes. Complex with larger polyether clamp proved Z-stereoselective in a macrocycle formation and yielded more Z isomers than commercial complexes in CM reactions. The catalysts are stable and easy to purify.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号