首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simple peptidomimetic molecules derived from amino acids were reacted with meta- and para-bis(bromomethyl)benzene in acetonitrile to very efficiently yield macrocyclic structures. The cyclization reaction does not require high dilution techniques and seems to be insensitive to the size of the formed macrocycle. The analysis of data obtained by (1)H NMR, single-crystal X-ray diffraction, fluorescence measurements, and molecular mechanics indicate that folded conformations can preorganize the system for an efficient cyclization. The role played by intramolecular hydrogen-bonding and solvophobic effects in the presence of folded conformations is analyzed.  相似文献   

2.
Preorganised urea groups moderate the anion-exchange properties of cationic receptor 2, favouring halide extraction and promoting anion transport through a bulk liquid membrane.  相似文献   

3.
Though glycolipids are involved in a multitude of cellular functions, the understanding of their atom-scale properties in lipid membranes has remained very limited due to the lack of atomistic simulations. In this work, we employ extensive simulations to characterize one-component membranes comprised of glycoglycerolipids, focusing on two common glyco head groups, namely glucose and galactose. The properties of these two glycoglycerolipid bilayers are compared in a systematic manner with membranes consisting of phosphatidylcholine (PC) or phosphatidylethanolamine (PE) lipids, whose structures aside from the head group are identical with those of the two glycolipids. We find that the glycolipid systems are characterized by a substantial number of hydrogen bonds in the head group region, leading to membrane packing that is stronger than in a PC but less significant than that in a PE bilayer. The role played by the glyco head group is especially evident in the electrostatic membrane potential, which is particularly large in the glycolipid membranes. For the same reason, the interfacial forces near glycolipid bilayers are significantly different from those found in PC and PE bilayers, affecting, e.g., the ordering of water close to the membrane. These effects are particularly important for the case of galactose, an important component in thylacoids.  相似文献   

4.
5.
Curcumin shows huge potential as an anticancer and anti-inflammatory agent. However, to achieve a satisfactory bioavailability and stability of this compound, its liposomal form is preferable. Our detailed studies on the curcumin interaction with lipid membranes are aimed to obtain better understanding of the mechanism and eventually to improve the efficiency of curcumin delivery to cells. Egg yolk phosphatidylcholine (EYPC) one-component monolayers and bilayers, as well as mixed systems containing additionally dihexadecyl phosphate (DHP) and cholesterol, were studied. Curcumin binding constant to EYPC liposomes was determined based on two different methods: UV/Vis absorption and fluorescence measurements to be 4.26 × 104 M−1 and 3.79 × 104 M−1, respectively. The fluorescence quenching experiment revealed that curcumin locates in the hydrophobic region of EYPC liposomal bilayer. It was shown that curcumin impacts the size and stability of the liposomal carriers significantly. Loaded into the EYPC/DPH/cholesterol liposomal bilayer curcumin stabilizes the system proportionally to its content, while the EYPC/DPH system is destabilized upon drug loading. The three-component lipid composition of the liposome seems to be the most promising system for curcumin delivery. An interaction of free and liposomal curcumin with EYPC and mixed monolayers was also studied using Langmuir balance measurements. Monolayer systems were treated as a simple model of cell membrane. Condensing effect of curcumin on EYPC and EYPC/DHP monolayers and loosening influence on EYPC/DHP/chol ones were observed. It was also demonstrated that curcumin-loaded EYPC liposomes are more stable upon interaction with the model lipid membrane than the unloaded ones.  相似文献   

6.
Limitations exist among the commonly used cyclic nitrone spin traps for biological free radical detection using electron paramagnetic resonance (EPR) spectroscopy. The design of new spin traps for biological free radical detection and identification using EPR spectroscopy has been a major challenge due to the lack of systematic and rational approaches to their design. In this work, density functional theory (DFT) calculations and stopped-flow kinetics were employed to predict the reactivity of functionalized spin traps with superoxide radical anion (O2*-). Functional groups provide versatility and can potentially improve spin-trap reactivity, adduct stability, and target specificity. The effect of functional group substitution at the C-5 position of pyrroline N-oxides on spin-trap reactivity toward O2*- was computationally rationalized at the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) and PCM/mPW1K/6-31+G(d,p) levels of theory. Calculated free energies and rate constants for the reactivity of O2*- with model nitrones were found to correlate with the experimentally obtained rate constants using stopped-flow and EPR spectroscopic methods. New insights into the nucleophilic nature of O2*- addition to nitrones as well as the role of intramolecular hydrogen bonding of O2*- in facilitating this reaction are discussed. This study shows that using an N-monoalkylsubstituted amide or an ester as attached groups on the nitrone can be ideal in molecular tethering for improved spin-trapping properties and could pave the way for improved in vivo radical detection at the site of superoxide formation.  相似文献   

7.
The ability of low-frequency ultrasound (LFUS) to release encapsulated drugs from sterically stabilized liposomes in a controlled manner was demonstrated. Three liposomal formulations having identical lipid bilayer compositions and a similar size ( approximately 100 nm) but differing in their encapsulated drugs and methods of drug loading have been tested. Two of the drugs, doxorubicin and methylpredinisolone hemisuccinate, were remote loaded by transmembrane gradients (ammonium sulfate and calcium acetate, respectively). The third drug, cisplatin, was loaded passively into the liposomes. For all three formulations, a short exposure to LFUS (<3 min) released nearly 80% of the drug. The magnitude of drug release was a function of LFUS amplitude and actual exposure time, irrespective of whether irradiation was pulsed or continuous. Furthermore, no change in liposome size distribution or in the chemical properties of the lipids or of the released drugs occurred due to exposure to LFUS. Based on our results, we propose that the mechanism of release is a transient introduction of porelike defects in the liposome membrane, which occurs only during exposure to LFUS, after which the membrane reseals. This explains the observed uptake of the membrane-impermeable fluorophore pyranine from the extraliposomal medium during exposure to LFUS. The implications of these findings for clinical applications of controlled drug release from liposomes are discussed.  相似文献   

8.
9.
The piperidine nitroxide tempamine (TMN) is a cell-permeable, stable radical having antioxidant, anticancer, and proapoptotic and/or pronecrotic activities, as was demonstrated by us in cell cultures. We also demonstrated synergism between TMN and doxorubicin in doxorubicin-sensitive and doxorubicin-resistant cell lines. Treatment of the C26 mouse colon carcinoma model in vivo also demonstrated synergism between TMN and doxorubicin in sterically stabilized liposomes (SSLs) containing TMN (SSL-TMN) and those containing doxorubicin. The above effects of TMN and SSL-TMN motivated us to develop and optimize the SSL-TMN formulation so that it will be able to reach the disease site with a sufficiently high TMN level and a release rate needed to achieve a therapeutic effect. Because TMN is an amphipathic weak base, it was remote loaded by an intraliposome high/extraliposome low transmembrane ammonium sulfate gradient. The kinetics and level of TMN loading were monitored by cyclic voltammetry (CV) and electron paramagnetic resonance (EPR); the latter also indicates TMN precipitation in the intraliposomal aqueous phase. The regeneration of the original CV and EPR signals by the ionophore nigericin indicates that TMN remained fully intact during loading and release. The cardinal role of the transmembrane ammonium ion gradient in the loading process was proven by the use of the selective ionophores nonactin (for NH4+) and nigericin (for H+). The anion of the ammonium salts affects loading stability and the rate of TMN release, both mediated through the TMN state of aggregation in the intraliposomal aqueous phase. The greater the TMN salt precipitation, the slower the TMN release rate. This was supported by measurement of osmolality, which is inversely related to TMN salt precipitate. Precipitation is in the order SO4(-2)>Cl-1>glucuronate-1. Liposome lipid composition, magnitude of the transmembrane ammonium ion gradient, and type of anion of the ammonium salt determine the amount of TMN loaded and its release rate.  相似文献   

10.
The micelles of two tripropargylammonium-functionalized cationic surfactants were cross-linked by a disulfide-containing diazido cross-linker in the presence of Cu(I) catalysts. With multiple residual alkyne groups on the surface, the resulting surface cross-linked micelles (SCMs) were postfunctionalized by reaction with 2-azidoethanol and an azido-terminated poly(ethylene glycol), respectively, via the alkyne-azide click reaction. The water-soluble nanoparticles obtained had low surface activity due to the buried hydrophobic tails. Cleavage of the disulfide cross-links by dithiothreitol (DTT) exposed the hydrophobic tails and resumed surface activity of the "caged" surfactants within 2 min after DTT addition. The controlled breakage of the SCMs was used to lower the surface tension of aqueous solutions and trigger the release of liposomal contents on demand.  相似文献   

11.
Application of the Domenicano et al. method of estimating group electronegativity from angular geometry of the ring in monosubstituted benzene derivatives allowed us to find how the electronegativity of OH/O(-) groups in H-bonded complexes of phenol and phenolate depends on the nature and strength of H-bond. For complexes in which the OH group is only proton donating in the H-bond, a linear dependence of the estimated electronegativity on O...O(N) interatomic distance was found for experimental (CSD base retrieved) data. The following rule is observed: the weaker the H-bond is, the more electronegative the OH group is. If apart from this kind of interaction the oxygen is proton accepting, then an increase of electronegativity is observed. Modeling (B3LYP/6-311+G) the variation of the strength of the H-bond by the fluoride anion approaching the OH leads to qualitatively the same picture as the scatter plots for experimental data.  相似文献   

12.
A number of prior studies have demonstrated that the DNA-binding and gene transfection efficacies of cationic amphiphiles crucially depend on their various structural parameters including hydrophobic chain lengths, headgroup functionalities, and the nature of the linker-functionality used in tethering the polar headgroup and hydrophobic tails. However, to date addressing the issue of linker orientation remains unexplored in liposomal gene delivery. Toward probing the influence of linker orientation in cationic lipid mediated gene delivery, we have designed and synthesized two structurally isomeric remarkably similar cationic amphiphiles 1 and 2 bearing the same hydrophobic tails and the same polar headgroups connected by the same ester linker group. The only structural difference between the cationic amphiphiles 1 and 2 is the orientation of their linker ester functionality. While lipid 1 showed high gene transfer efficacies in multiple cultured animal cells, lipid 2 was essentially transfection incompetent. Findings in both transmission electron microscopic and dynamic laser light scattering studies revealed no significant size difference between the lipoplexes of lipids 1 and 2. Findings in confocal microscopic and fluorescence resonance energy transfer (FRET) experiments, taken together, support the notion that the remarkably higher gene transfer efficacies of lipid 1 compared to those of lipid 2 presumably originate from higher biomembrane fusogenicity of lipid 1 liposomes. Differential scanning calorimetry (DSC) and fluorescence anisotropy studies revealed a significantly higher gel-to-liquid crystalline temperature for the lipid 2 liposomes than that for lipid 1 liposomes. Findings in the dye entrapment experiment were also consistent with the higher rigidity of lipid 2/cholesterol (1:1 mole ratio) liposomes. Thus, the higher biomembrane fusibility of lipid 1 liposomes than that of lipid 2 liposomes presumably originates from the more rigid nature of lipid 2 cationic liposomes. Taken together, the present findings demonstrate for the first time that even as minor a structural variation as linker orientation reversal in cationic amphiphiles can profoundly influence DNA-binding characteristics, membrane rigidity, membrane fusibility, cellular uptake, and consequently gene delivery efficacies of cationic liposomes.  相似文献   

13.
Matrix metalloproteinases (MMPs) constitute a class of extracellular-matrix-degrading enzymes overexpressed in many cancers and contribute to the metastatic ability of the cancer cells. We have recently demonstrated that liposomal contents can be released when triggered by the enzyme MMP-9. Herein, we report the results of our mechanistic studies of the MMP-9-triggered release of liposomal contents. We synthesized peptides containing the cleavage site for MMP-9 and conjugated them with fatty acids to prepare the corresponding lipopeptides. By employing circular dichroism (CD) spectroscopy, we demonstrated that the lipopeptides, when incorporated into liposomes, are demixed in the lipid bilayers and generate triple-helical structures. MMP-9 cleaves the triple-helical peptides, leading to the release of the liposomal contents. Other MMPs, which cannot hydrolyze triple-helical peptides, fail to release the contents from the liposomes. We also observed that the rate and extent of release of the liposomal contents depend on the mismatch between the acyl chains of the synthesized lipopeptide and phospholipid components of the liposomes. CD spectroscopic studies imply that the observed differences in the release reflect the ability of the liposomal membrane to anneal the defects following the enzymatic cleavage of the liposome-incorporated lipopeptides.  相似文献   

14.
A mercury-supported bilayer lipid micromembrane was prepared by anchoring a thiolipid monolayer to a mercury cap electrodeposited on a platinum microdisc about 20 μm in diameter; a lipid monolayer was then self-assembled on top of the thiolipid monolayer either by vesicle fusion or by spilling a few drops of a lipid solution in chloroform on the cap and allowing the solvent to evaporate. Single-channel recording following incorporation of the alamethicin channel-forming peptide exhibits quite different features, depending on the procedure followed to form the distal lipid monolayer. The "spilling" procedure, which avoids the formation of adsorbed or partially fused vesicles, yields very sharp single-channel currents lasting only one or two milliseconds. These are ascribed to ionic flux into the hydrophilic spacer moiety of the thiolipid. Conversely, the vesicle-fusion procedure yields much longer single-channel openings analogous to those obtained with conventional bilayer lipid membranes, albeit smaller. This difference in behavior is explained by ascribing the latter single-channel currents to ionic flux into vesicles adsorbed and/or partially fused onto the tethered lipid bilayer, via capacitive coupling.  相似文献   

15.
The conformational substates B(I) and B(II) of the phosphodiester backbone in B-DNA are thought to contribute to DNA flexibility and protein recognition. We have studied by rapid scan FTIR spectroscopy the isothermal B(I)-B(II) transition on its intrinsic time scale. Correlation analysis of IR absorption changes occurring within seconds after a reversible incremental growth of the DNA hydration shell identifies water populations w(1) (PO(2)(-)-bound) and w(2) (non-PO(2)(-)-bound) exhibiting weaker and stronger H-bonds, respectively, than those dominating in bulk water. The B(II) substate is stabilized by w(2). The water H-bond imbalance of 3-4 kJ mol(-1) is equalized at little enthalpic cost upon formation of a contiguous water network (at 12-14 H(2)O molecules per DNA phosphate) of reduced ν(OH) bandwidth. In this state, hydration water cooperatively stabilizes the B(I) conformer via the entropically favored replacement of w(2)-DNA interactions by additional w(2)-water contacts, rather than binding to B(I)-specific hydration sites. Such water rearrangements contribute to the recognition of DNA by indolicidin, an antimicrobial 13-mer peptide from bovine neutrophils which, despite little intrinsic structure, preferentially binds to the B(I) conformer in a water-mediated induced fit. The FTIR spectra resolve sequential steps leading from PO(2)(-)-solvation to substate transition and eventually to base stacking changes in the complex. In combination with CD-spectral titrations, the data indicate that, in the absence of a bulk aqueous phase, as in molecular crowded environments, water relocation within the DNA hydration shell allows for entropic contributions similar to those assigned to water upon DNA ligand recognition in solution.  相似文献   

16.
17.
Classical molecular dynamics simulations of various methanol phase lines near the saturation curve and the critical point have been performed to study the changes in H-bonded clusters structure at transition of methanol to supercritical state. Analysis of H-bonds statistics with combined distance-energy H-bond criterion showed that the correlations between topological characteristics of H-bonds and the mole fraction of H-bonded molecules have unique functional representation despite the phase path applied. In the present study, an attempt has been also made to evaluate the degree of hydrogen bonding by combining the DFT computations on classical MD configurations with the natural bond orbital analysis of the waves functions obtained.  相似文献   

18.
19.
A coupled Hartree-Fock calculation of the proton shielding constant in FHF with a reasonably good basis set of contracted gaussian orbitals leads to an extremely large upfield H-bond chemical shift with respect to the HF molecule. An approximate scheme, based on the requirement of the gauge origin independence of the finite basis set coupled Hartree-Fock calculations of the magnetic susceptibility, provides a considerable improvement of the computed proton shielding constant and results in the required downfield H-bond chemical shift of the proton resonance. The computed H-bond shift for FHF agrees with the experimental data.  相似文献   

20.
Russian Chemical Bulletin - An approach for the preparation of a polymer delivery system consisting of sodium alginate (SA) and carbopol was developed. The efficiency of the inclusion of medicinal...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号