首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first monomode microwave-assisted atom transfer radical additions (ATRA) of carbon tetrachloride to various olefins were successfully performed, affording the adducts with almost quantitative yields in less than 10 min at 160 °C.  相似文献   

2.
[RuCl2(p-cymene)] complexes containing triarylphosphine ligands with various substituents at the para position were used to catalyse the atom transfer radical addition of carbon tetrachloride to various olefins, and their catalytic activities were nicely correlated with their electrochemical parameters.  相似文献   

3.
4.
A novel series of Schiff base ruthenium complexes that are active catalysts in the field of atom transfer radical polymerization (ATRP), have been prepared. Moreover, when activated with trimethylsilyldiazomethane (TMSD), these species exhibit good catalytic activity in the ring opening metathesis polymerization (ROMP) of norbornene and cyclooctene. The activity for both the ROMP and ATRP reaction is dependent on the steric bulk and electron donating ability of the Schiff base ligand. The control over polymerization in ATRP was verified for the two substrates that exhibit the highest activity, namely MMA and styrene. The results show that the optimal ATRP equilibrium leading to a controlled polymerization, can be established by adjusting the steric and electronic properties of the Schiff base ligand.  相似文献   

5.
The catalytic activity of ruthenium-p-cymene complexes bearing N-heterocyclic carbene ligands in atom transfer radical addition (ATRA) or polymerisation (ATRP) strongly depends on the substituents of the carbene ligand, thereby providing a nice illustration of the importance of organometallic engineering and ligand fine tuning in homogeneous catalysis.  相似文献   

6.
This article reviews the recent progress of zirconium complexes for ethylene polymerization. Zirconium complexes are one of the most important types of catalysts for homogeneous ethylene polymerization. Polymerization behavior and polymer structure can be adjusted through the balancing of ligand structure. We surveyed the zirconium complexes synthesized from 2006 to early 2009 and summarize their comparative catalytic activities. Generally, the main factor observed is the steric bulk which on increasing reduces the catalytic activity. Electron count, electronic cloud, and inductive effect also influence the catalytic activity.  相似文献   

7.
Addition of diethyl phosphite or diethyl thiophosphite to enol ethers, in the presence of a radical initiator, results in the regioselective synthesis of organophosphonate or phosphonothioate derivatives, respectively, under mild conditions. This method can be applied to the stereoselective formation of substituted tetrahydrofurans and tetrahydropyrans, on cyclisation of vinyl ethers bearing unsaturated side chains.  相似文献   

8.
An orthopalladated complex of commercially available tris(2,4-di-tert-butylphenyl)phosphite proves to be an extremely active catalyst in the Heck arylation of alkenes, with turnover numbers of up to 5,750,000 (mol product.mol Pd−1) and turnover frequencies of up to nearly 300,000 (mol product.mol Pd−1.h−1).  相似文献   

9.
A great variety of olefinic substrates having aromatic, carbocyclic and aliphatic olefins are effectively and selectively oxidized with oxygen-rich molybdenum(VI) complexes, namely [MoO(O2)2·2QOH] 1, [MoO(O2)(QO)2] 2, [Mo(O)2(QO)2] 3, [PPh4][MoO(O2)2(QO)] 4, [PPh4][Mo(O)2(O2)(QO)] 5 and [PPh4][Mo(O)3(QO)] 6 (QOH = 8-quinolinol) as catalyst, NaHCO3 as co-catalyst and H2O2 as the terminal oxidant, at room temperature. Catalysts 1 and 4 show unmatched yield, turnover number (TON) and turnover frequency (TOF), and hence shortest reaction time.  相似文献   

10.
Ansa metallocene dichloride complexes of titanium, zirconium, and hafnium can be activated by methyl aluminoxane (MAO) to give excellent catalysts for the homogeneous polymerization of ethylene and propylene. The symmetry of the corresponding metaliocene dichloride complexes is essential for the stereospecific polymerization of propylene (isotactic, syndiotactic or atactic). The application of fluorenyl groups instead of cyclopentadienyl groups greatly increases the activity of the catalysts. The first ansa bis(fluorenyl) complexes of zirconium and hafnium, (C13H8-C2H4-C13Hs)MCl2 (M = Zr, Hf), have been prepared. It was found that after the activation by MAO the zirconium derivative demonstrates a very high activity. Several model complexes are presented in order to discuss the mechanism of the polymerization.This paper was presented at the INEOS-94 Workshop The Modern Problems of Organometallic Chemistry (Moscow, May 21–27, 1994).Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 7–14, January, 1995.  相似文献   

11.
N-Phenyltriazolinedione is found to be an efficient initiator in the radical (anti-Markovnikov) addition of thiophenol to 2-methyl-2-butene. A second, minor, product (an alcohol, from oxygen addition) was also obtained, and a possible mechanistic scheme is proposed.  相似文献   

12.
  相似文献   

13.
The theoretical study focused on the possible use of low-molecular-weight mono-as well as multifunctional terminal alkynes as catalysts for two reactions, which are known to be typically acid catalyzed - acetalization and esterification, is presented in this study. Multifunctional terminal alkynes [(diethynylbenzenes, triethynylbenzene, and tetrakis(4-ethynylphenyl)methane] were significantly more active than the monofunctional ones (cyclopropylacetylene, phenylacetylene, 3-cyclohexylprop-1-yne, 1-ethynyl-2-fluorobenzene, 1-ethynyl-4-fluorobenzene, 4-ethynyltoluene, 4-tert-butylphenylacetylene, and 2-ethynyl-α,α,α-trifluorotoluene), this fact can be partly explained by the higher amount of ethynyl groups per alkyne molecule. We confirmed that terminal ethynyl groups in low-molecular-weight alkynes can successfully act as acid catalytic centers for acetalization as well as for esterification.  相似文献   

14.
This article reports on the presumably first use of iron complexes (FeC) as potential photocatalysts for controlled radical photopolymerization reactions (CRP2). Three compounds were designed and investigated. Good linear evolutions of the molecular weight (Mn) with the conversion were observed. A comparison was provided with a reference iridium (III) complex [Ir(ppy)3 where ppy stands for 2‐phenylpyridine]. The on/off photopolymerization experiments highlight the presence of dormant species and a re‐initiation on demand upon irradiation. This unique re‐initiation property was used for the modification of surfaces (hydrophilic/hydrophobic properties) and surface patterning as well as the synthesis of a block co‐polymer (PMMA‐b‐PBA). A comparative analysis of the behavior of these iron complexes in thermally and photochemically activated polymerization was provided. The chemical mechanisms were studied by steady state photolysis, laser flash photolysis, cyclic voltammetry, luminescence quenching, and electron spin resonance experiments. A catalytic cycle was proposed with two steps: (i) the oxidation of the FeC excited state by an alkyl halide and (ii) the reduction by the oxidized form (FeC°+) by an amine or the macroradicals leading to the regeneration of the catalyst. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 702–713  相似文献   

15.
Six iron complexes (FeCs) with various ligands have been designed and synthesized. In combination with additives (e.g., iodonium salt, N‐vinylcarbazole, amine, or chloro triazine), the FeC‐based systems are able to efficiently generate radicals, cations, and radical cations on a near UV or visible light‐emitting diode (LED) exposure. These systems are characterized by an unprecedented reactivity, that is, for very low content 0.02% FeC‐based systems is still highly efficient in photopolymerization contrary to the most famous reference systems (Bisacylphosphine oxide) illustrating the performance of the proposed catalytic approach. This work paves the way for polymerization in soft conditions (e.g., on LED irradiation). These FeC‐based systems exhibit photocatalytic properties, undergo the formation of radicals, radical cations, and cations and can operate through oxidation or/and reduction cycles. The photochemical mechanisms for the formation of the initiating species are studied using steady state photolysis, cyclic voltammetry, electron spin resonance spin trapping, and laser flash photolysis techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 42–49  相似文献   

16.
Several oxorhenium compounds in the formal oxidation states V and VII are examined as catalysts for the aldehyde-olefination starting from diazo compounds, phosphines, and aldehydes. Of these, [ReMeO2(eta2-alkyne)] complexes provide the simplest catalysts to study, although [ReOCl3(PPh3)2] still remains the most efficient rhenium catalyst for aldehyde-olefination described to date. Prior to the reaction with the Re catalysts the phosphine and the diazo compound react to form a phosphazine. No catalytic reaction occurs in cases where no phosphazine formation is observed. The first step of the catalytic cycle involves the formation of a carbene intermediate by the reaction of phosphazine and catalyst under extrusion of phosphine oxide and dinitrogen. In a second step the carbene reacts with aldehyde under olefin formation and catalyst regeneration. Excess of alkyne as well as the presence of ketones slows down the catalytic reaction. The olefination of 4-nitrobenzaldehyde with diazomalonate is possible with these Re catalysts. In contrast, this reaction does not take place either in the classical Wittig fashion from Ph3P=C(CO2Et)2 and aldehyde or by use of all other catalysts for aldehyde olefination reactions reported to date. Catalytic ylide formation from diazo compounds seems therefore not to be the only pathway through which catalytic aldehyde-olefination reactions can proceed.  相似文献   

17.
Ruthenium complexes of the type [RuH(η5-CB)(PPh3)2] {CB is a monoanionic charge-compensated carborane ligand such as [9-SR2-7,8-C2B9H10] and [9-SR2-7-CH3-7,8-C2B9H9]} efficiently catalyse the Kharasch addition of CCl4 across olefins and, with maximum total turnover numbers of 9000 and initial turnover frequencies of 1900 h−1 at 40°C, highly surpass their Ru-Cp# analogues in these reactions.  相似文献   

18.
Electrochemistry strongly contributed to deepen the understanding and predictability of atom transfer radical polymerization (ATRP) outcomes. Several electrochemical tools have been used to determine thermodynamic and kinetic parameters that are hardly accessible by other techniques. The electrochemical methods presented in this brief review were applied to systems with extremely different ATRP reactivity, providing a rational database of primary reference for further developments of ATRP.  相似文献   

19.
The dinuclear ruthenium complexes [Ru2(μ-sac)2(CO)6] (1), [Ru2(μ-sac)2(CH3CN)2(CO)4] (3), [Ru2(μ-sac)2(CO)5(PPh3)] (4) and [Ru2(μ-sac)2(CO)4(PPh3)2] (5) as well as the tetranuclear ruthenium complex [Ru2(μ-sac)2(CO)5]2 (2) (sac = saccharinate, C7H4NO3S) were synthesized starting from Ru3(CO)12 and saccharin. X-ray crystal structure analysis of 1, 3A × p-xylene, 4 × CH2Cl2 and 5 × 3CH2Cl2 showed that the core is bridged through the amidate moieties of the two saccharinate ligands, with a head-tail arrangement in complexes 1, 3A and 5, and a head-head arrangement in 4. For complex 3, an equilibrium mixture of the head-head regioisomer 3A and a second species 3b exists in solution. Complexes 1 and 2 are suitable catalysts for the cyclopropanation of nucleophilic alkenes (styrene, cyclohexene and 2-methyl-2-butene) with methyl diazoacetate.  相似文献   

20.
Catalytic intermolecular cycloalumination of cyclo-1,2-dienes and olefins assisted by EtAlCl2 in the presence of Cp2ZrCl2 as catalyst gave rise to unsaturated di- and polycyclic aluminacarbocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号