首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report deals with a study of the properties of internal cavities of dendritic macromolecules that are capable of encapsulating and mediating photoreactions of guest molecules. The internal cavity structures of dendrimers are determined by the interfacial regions between the aqueous exterior and hydrocarbon like interior constituted by the linkers that connect symmetrically sited branch points constituting the dendrimer and head groups that cap the dendrimers. Phloroglucinol-based poly(alkyl aryl ether) dendrimers constituted with a homologous series of alkyl linkers were undertaken for the current study. Twelve dendrimers within first, second, and third generations, having ethyl, n-propyl, n-butyl, and n-pentyl groups as the linkers and hydroxyl groups at peripheries in each generation, were synthesized. Encapsulation of pyrene and coumarins by aqueous basic solutions of dendrimers were monitored by UV-vis and fluorescence spectroscopies, which showed that a lower generation dendrimer with an optimal alkyl linker presented better encapsulation abilities than a higher generation dendrimer. Norrish type I photoreaction of dibenzyl ketone was carried out within the above series of dendrimers to probe their abilities to hold guests and reactive intermediate radical pairs within themselves. The extent of cage effect from the series of third generation dendrimers was observed to be higher with dendrimers having an n-pentyl group as the linker.  相似文献   

2.
Four unconventional triazine‐based dendrimers have been prepared and characterized by 1H and 13C NMR spectroscopies, mass spectrometry, and elemental analysis. Based on DSC studies, polarizing microscopy, and powder XRD, two of these dendrimers, containing linkers with an odd number of carbon atoms, were observed to display columnar liquid–crystalline phases during thermal treatment. However, the other two dendritic analogues, containing linkers with an even number of carbon atoms, were not observed to behave correspondingly. Based on computer simulation, we reasonably assume that the dendrimers with an odd number of carbon atoms in their linkers distort their molecular shape and adopt two isomeric structures due to asymmetrical congestion. This reduces the molecular π–π face‐to‐face interaction, which in turn causes the dendrimers to form columnar LC phases during thermal treatment. However, the dendrimers with an even number of carbon atoms in their linkers have more symmetrical skeletons and do not display any liquid–crystalline phase upon thermal treatment. This new strategy should be applicable for eliciting the columnar liquid–crystalline properties of other types of unconventional dendrimers with rigid frameworks.  相似文献   

3.
Dendritic microenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G3-C(5)G3). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G3 and C(4)G3 dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G3 and C(2)G3 gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G3 < C(4)G3 相似文献   

4.
A series of rigid polyphenylene, free-base porphyrin-containing dendrimers terminated with either dimethoxybenzene or benzoquinone end-groups were prepared by a combined divergent and convergent synthesis. Unlike previous routes for preparing polyphenylene dendrimers that are incompatible with end-groups bearing certain functional moieties, the synthetic methodology chosen for this work enables incorporation of functional groups on the dendrimer end-groups during preparation of the dendrimer wedges and during synthesis of the final dendrimer. The basic strategy utilized a convergent preparation of dendrimer wedges using Suzuki coupling conditions, which were then either attached to a porphyrin core in a divergent coupling step or cyclized to form the porphyrin dendrimer in a convergent step. The latter approach was found to be more general and resulted in higher yields and more readily separated products. Steady-state absorption measurements for these dendrimers showed Soret and Q-band absorptions typical of free-base porphyrins. Preliminary steady-state fluorescence measurements of these dendrimers indicate quenching of the S1 state of the free-base porphyrin in all benzoquinone-containing dendrimers that is attributed to efficient electron-transfer from the excited porphyrin to the benzoquinone end-groups. The amount of fluorescence quenching was in good agreement with the number of benzoquinone groups at the dendrimer periphery and the distance between the porphyrin and benzoquinone groups as calculated by semiempirical (AM1) molecular orbital calculations.  相似文献   

5.
Diamine linkers for the synthesis of dendrimers based on melamine were identified using competition reactions. The relative reactivity of the surveyed cyclic monoamines varies by 40 times, expanding the previously identified series to an overall relative reactivity range of 320 times. Azetidine is 40 times more reactive than the cyclic, nine-membered ring (C8H17N), and 320 times more reactive than benzylamine. Reactivity differences are attributed to pKa values and sterics. Diamines incorporating these groups are useful linkers that can be employed in dendrimer synthesis. Specifically, the nucleophilicity of the individual amine groups comprising 3-aminoazetidine, 3-aminopyrrolidine, and 4-aminopiperidine varies by 100 times, 70 times, and 20 times, respectively. These linkers are incorporated into a generation three dendrimer.  相似文献   

6.
A combination of a thiol‐Michael addition reaction and a free radical mediated thiol–ene reaction is employed as a facile and efficient approach to carbosiloxane dendrimer synthesis. For the first time, carbosiloxane dendrimers are constructed rapidly by an orthogonal click strategy without protection/deprotection procedures. The chemoselectivity of these two thiol–ene click reactions leads to a design of a new monomer containing both electron‐deficient carbon–carbon double bonds and unconjugated carbon–carbon double bonds. Siloxane bonds are introduced as the linker between these two kinds of carbon–carbon double bonds. Starting from a bifunctional thiol core, the dendrimers are constructed by iterative thiol–ene click reactions under different but both mild reaction conditions. After simple purification steps the fifth dendrimer with 54 peripheral functional groups is obtained with an excellent overall yield in a single day. Furthermore, a strong blue glow is observed when the dendrimer is excited by a UV lamp.

  相似文献   


7.
The emergence and spread of drug-resistant bacteria (DRB) is a global health threat. Early and accurate detection of DRB is a critical step in the treatment of DRB infection. However, traditional assays for DRB detection are time-consuming and have inferior analytical sensitivity and quantification capability. Herein, a mass-tagged probe (MP-CMSA)-mediated enzyme- and light-assisted cascaded signal amplification strategy was developed for the ultrasensitive detection of β-lactamase (BLA), an enzyme closely associated with most DRB. Each MP-CMSA probe contained multiple poly(amidoamine) (PAMAM) dendrimer molecules immobilized on a streptavidin agarose bead via a BLA-cleavable linker, and each dendrimer was modified with multiple mass tags via a photo-cleavable linker. In BLA detection, BLA could cleave the BLA-cleavable linker, leading to dendrimers shedding from the MP-CMSA probe to achieve enzyme-assisted signal amplification. Then, each dendrimer can further release mass tags under UV light to achieve light-assisted signal amplification. After this cascaded signal amplification, the released mass tags were ultimately quantified by mass spectrometry. Consequently, the sensitivity of BLA detection can be significantly enhanced by four orders of magnitude with a detection limit of 50.0 fM. Finally, this approach was applied to the blood samples from patients with DRB. This platform provides a potential strategy for the sensitive, rapid and quantitative detection of DRB infection.

Development of a mass-tagged probe-mediated enzyme- and light-assisted cascaded signal amplification strategy for the ultrasensitive detection of β-lactamase.  相似文献   

8.
The coupling reactions of ethynylferrocene with trihalogenoarenes do not lead to ethynylferrocenyl arenes that are soluble enough to form the basis of a suitable construction of stiff ferrocenylethynyl arene‐cored dendrimers, which explains the previous lack of reports on stiff ferrocenyl dendrimers. However, rigid ferrocenyl‐terminated dendrimers have been synthesized from 1,3,5‐tribromo‐ and triiodobenzene through Sonogashira and Negishi reactions with 1,2,3,4,5‐pentamethyl‐1′‐ethylnylferrocene ( 1 a ), according to 1→2 connectivity. With compound 1 a , the construction of a soluble dendrimer ( 10 a ) that contained 12 ethynylpentamethylferrocenyl termini was achieved. Stiff dendrimer 10 a shows a single, reversible cyclic voltammetry (CV) wave (with adsorption), which disfavors the hopping heterogeneous electron‐transfer mechanism that is postulated for redox‐terminated dendrimers that contain flexible tethers. The selectivity of these Sonogashira reactions allows the synthesis of an arene‐cored dendron ( 2 c ) that contains both ethynylferrocenyl and 1,2,3,4,5‐pentamethyl‐ferrocenylethynyl redox groups, thus leading to the construction of a dendrimer ( 7 c ) that contains both types of differently substituted ferrocenyl groups with two well‐separated reversible CV waves. Upon selective oxidation, this mixed dendrimer ( 7 c ) leads to a class‐II mixed‐valence dendrimer, 7 c [PF6]3, as shown by Mössbauer spectroscopy, whereas oxidation of the related fully pentamethylferrocenylated dendrimer ( 7 a ) leads to the all‐ferricinium dendrimer, 7 a [PF6]6.  相似文献   

9.
The copolymerizations of two series of surface functionalized bis(acetylene) G1–G3 dendrimers, one ( S ‐ Gn ) having a structural rigid skeleton and the other ( L ‐ Gn ) a relatively more flexible architecture, with two platinum linkers, cis‐[(Et2PCH2CH2PEt2)PtCl2] ( 2 ) and [Cl(Et3P)2Pt‐C?C‐p‐C6H4‐]2 ( 3 ) were investigated. For both series of dendrimers, only linear and/or cyclic oligomers were formed when the cis‐platinum linker 2 was used. However, high molecular weight (100–200 kD) organoplatinum poly(dendrimer)s were obtained from both series when the elongated linear rod‐liked platinum linker 3 was employed and the formation of cyclic oligomers was greatly suppressed for both the structural rigid S ‐ Gn and the structural flexible L ‐ Gn series. These results are in sharp contrast to our earlier findings (S.‐Y. Cheung, H.‐F. Chow, T. Ngai, X. Wei, Chem. Eur. J. 2009 , 15, 2278–2288) obtained by using a shorter linear platinum linker trans‐[Pt(PEt3)2Cl2] ( 1 ), where a larger amount of cyclic oligomers was formed from the structural flexible L ‐ Gn dendrimers. A model was proposed to rationalize how the geometry and size of the platinum linker could control the copolymerization behaviours of these dendritic macromonomers.  相似文献   

10.
To overcome the limited brightness of existing fluorogenic molecular probes for biomolecular targets, we introduce a concept of fluorogenic dendrimer probe, which undergoes polarity-dependent switching due to intramolecular aggregation-caused quenching of its fluorophores. Based on a rational design of dendrimers with four and eight squaraine dyes, we found that octamer bearing dyes through a sufficiently long PEG(8) linker displays >400-fold fluorescence enhancement from water to non-polar dioxane. High extinction coefficient (≈2,300,000 m −1 cm−1) resulted from eight squaraine dyes and quantum yield (≈25 %) make this octamer the brightest environment-sensitive fluorogenic molecule reported to date. Its conjugate with cyclic RGD used at low concentration (3 nm ) enables integrin-specific fluorescence imaging of cancer cells with high signal-to-background ratio. The developed dendrimer probe is a “golden middle” between molecular probes and nanoparticles, combining small size, turn-on response and high brightness, important for bioimaging.  相似文献   

11.

The interparticle spacing of carboxyl functionalized gold nanoparticles (Au‐COOH) were mediated by rigid crosslinkers, octa(3‐aminopropyl)octasilsesquioxane (POSS‐NH3 +) and poly(amidoamine) dendrimer terminated with hydroxyl groups (PAMAM‐OH), and a flexible polymeric linker, poly(hexanul viologen) (6‐VP). Regular interparticle spacing was achieved by utilizing POSS‐NH3 + and PAMAM‐OH dendrimer as cross linkers, whereas size growth of Au‐COOH was observed featuring no interparticle spacing by utilizing 6‐VP as the crosslinker.  相似文献   

12.
The adsorption of naphthalene disulfonic acid surface-functionalized dendrimers (generation 4) on to colloidal alumina particles is reported, considering the role of dendrimer core type (ammonia vs benzylhydrylamine-polylysine) and electrolyte addition on the adsorption affinity and interfacial packing and competitive adsorption. Irrespective of the dendrimer core type, the maximum adsorbed amount increased with increasing ionic strength. The adsorption affinity of a benzylhydrylamine-cored SPL-7013 increased with increasing ionic strength, whereas a decrease was observed for the ammonia-cored SPL-2923. At high ionic strengths (>or=10(-1) M NaCl) dendrimers close pack at the interface as an array of equivalent hard spheres, whereas at lower ionic strengths both dendrimers occupy a lower area than theoretically predicted for either cubic or hexagonal close packing, based on double layer repulsion. The additional attraction between dendrimers is attributed to the intercalation of the neighboring dendrons. Adsorption of SPL-2923 is enhanced by the presence of Ca2+ ions and depressed by the presence of HCO3- and HPO4(2-) ions, whereas SPL-7013 adsorption is only depressed by the presence of HPO4(2-) ions, suggesting a dendrimer-specific competitive adsorption process. This work clearly demonstrates the role of dendrimer architecture on adsorption at an interface, a process of fundamental importance to a wide range of dendrimer applications.  相似文献   

13.
A small library of dendrimers was prepared from a common precursor that is available in 5 g scale in five linear steps at 56% overall yield. The precursor is a generation three dendrimer that displays 48 peripheral sites by incorporating AB4 surface groups. Manipulation of these sites provided six dendrimers that vary in the chemistry of the surface group (amine, guanidine, carboxylate, sulfonate, phosphonate, and PEGylated) that were evaluated for hemolytic potential and cytotoxicity. Cationic dendrimers were found to be more cytotoxic and hemolytic than anionic or PEGylated dendrimers. The PEGylated dendrimer was evaluated for acute toxicity in vivo. No toxicity--neither mortality nor abnormal blood chemistry based on blood urea nitrogen levels or alanine transaminase activity--was observed in doses up to 2.56 g/kg i.p. and 1.28 g/kg i.v.  相似文献   

14.
The 0.5-2 generations of siloxane-based PAMAM dendrimers with 1, 3-bis(3-aminopropyl) tetramethyldisiloxane (G0) as core unit were synthesized by two different methods. Their structures were characterized by FTIR, 1H NMR, 13C NMR, LC/MS, TGA, and DSC. Results show that method two is more suitable as its synthetic procedure is simple and it provides higher yield than method one. DSC analysis indicates that the introduction of the siloxane linkage into the interior of the dendrimers has significant effect on the flexibility of the dendrimer structures. Lanthanide complexes of the newly designed siloxane-based PAMAM dendrimers were obtained by complexing with Eu(III) and Tb(III), respectively. The luminescent properties of the complexes in the solution were investigated. Narrow-width red and green emissions were observed from the complexes of G0.5, G1.5, and G2.0, indicating intramolecular energy transfer process takes place between ligands and lanthanide ions.  相似文献   

15.
The intramolecular relaxation dynamics of semiflexible dendrimers in dilute solutions are theoretically investigated in the framework of optimized Rouse-Zimm formalism. Semiflexibility is implemented by modeling topological restrictions on the bond directions and orientations of the respective bond-vectors. Based on our recently developed approach for semiflexible dendrimers [A. Kumar and P. Biswas, Macromolecules 43, 7378 (2010)], the mechanical and dielectric relaxation moduli are studied as functions of local flexibility parameters and branching topology. It is rather interesting to observe that semiflexibility affects the local modes of G'(ω) and Δε'(ω), which have lower relaxation rate with increasing bond restrictions, while the collective modes with small relaxation rate remain almost constant. The relaxation dynamics of the flexible dendrimer is similar to that of the semiflexible dendrimer with unrestricted bond orientations (Φ = 0) and is flanked by the compressed (Φ = 30°) and expanded (Φ = 150°) conformations, respectively. The effect of semiflexibility is typically reflected in the intermediate frequency regime. The expanded conformations of semiflexible dendrimers display a power-law behavior in the intermediate frequency regime for both loss and storage modulus resembling fractal structures, while the compressed and unrestricted bond orientation conformations exhibit an approximately logarithmic dependence. The power-law exponent is found to be similar to the flexible dendrimers with excluded volume interactions. Thus, by tuning Φ, a spectrum of dynamic relaxation pattern is obtained spanning a broad range of conformations from a power-law fractal network to a non-fractal one. In certain limits, this highly generalized model captures the characteristics of flexible dendrimers and also resembles La Ferla's model semiflexible dendrimers. The influence of hydrodynamic interactions reduces the dynamical range and the width of the intermediate domain by decreasing the smaller relaxation rates and increasing the higher relaxation rates correspondingly.  相似文献   

16.
The thermal properties of twelve Janus-type dendrimers up to the second generation were evaluated by termogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-bis-dodecyloxybenzoic acid, 3,5-bis-dodecyloxybenzoic acid or 3,4,5-tris-dodecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The thermal stability of the compounds was evaluated by TGA, displaying onset decomposition temperatures (Td) at around 250 °C. DSC measurements upon heating and cooling confirmed that OH terminated Janus dendrimers featuring large polarity difference in opposite sides display liquid crystalline phases with exception of 3,5-type G1 dendrimer; while acetonide terminated dendrimers displayed merely melting transitions. Dendrimers having terminal alkyl chains at positions 3,4 or 3,4,5 in aromatic moieties exhibited enantiotropic mesophases. However, the thermal behavior of the dendrimers with 3,5-substitution pattern was different: the 3,5-type G1 dendrimer exhibit a lack of mesomorphic transition, and in the case of the 3,5-type G2 dendrimer, the mesophase was absent in the first heating scan but was observed during the subsequent cooling and heating scans at the rate of 10 °C/min.  相似文献   

17.
A reactive three‐layered dendrimer containing carboxyl groups was synthesized by the coupling of dicarboxylic acid and a highly reactive, two‐layered glycopeptide dendrimer. Lactose, maltose, or maltotriose was reacted with the poly(lysine) dendrimer in its third and fourth generations by reductive amination and afforded two‐layered glycolysine dendrimers. The reaction was conducted in a borate buffer (pH 9.0). 1H NMR, 13C NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analyses were applied for the determination of the structures of the products. When an excess amount of the oligosaccharide and a long reaction time were used, the degree of substitution increased to 1.5–2.0 against an amino group. For the preparation of highly reactive, multilayered dendrimers for an antigen carrier, C6 hydroxy groups of the oligosaccharides were selectively esterified by adipic acid and suberic acid to give 6‐O‐adipoyl oligosaccharide–poly(lysine) dendrimers and 6‐O‐suberoyl oligosaccharide–poly(lysine) dendrimers. The reactivity of these multilayered dendrimers was examined by a model reaction with phenylalanine ethyl ester. The dendrimer showed high reactivity, providing phenylalanine ethyl ester–dicarboxylate oligosaccharide–poly(lysine) dendrimers with a considerably high proportion of phenylalanine residues. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3622–3633, 2002  相似文献   

18.
In this report, the stepwise synthesis of a novel rigid and functionalised macrocycle 2 based on triazine and phenylenediamine linkers, is presented. Poor recognition of the macrocycle 2 for its substrates is observed, which shows experimentally that for the meltriazine based-calix[6]arene system, the binding ability of the melamine moiety gets more benefit from the ring flexibility derived from a xylenediamine linker 1 than from a phenylenediamine linker 2.  相似文献   

19.
Poly(ethylene glycol) (PEG)-supported dendrimers have been synthesized using 2.4,6-trichloro-1,3,5-triazine (TCT) as dendrons and tris(hydroxymethyl)aminomethane as tinkers with high loading capacity, excellent solubility and thermal stability by divergent method. The new synthesized PEG-supported G2.0 dendrimer has 10 times as large functional group loading capacity as commercial PEG3400 with overall yield 44.0%.  相似文献   

20.
First generation dendrimers with three oligothiophene arms (meta-arranged, 3G1-nS) and four arms (ortho- and para-arranged, 4G1-nS) connected to a central phenyl core were investigated spectroscopically in solution. In all dendrimers, on an ultrafast time scale (<10 ps), two "cooling" processes convert the initially generated, "hot" exciton into the geometrically relaxed, "cold" exciton. A decrease in the triplet yield, particularly evident for the 4-arm dendrimers; intersystem crossing rate; and nonradiative triplet decay time with increasing number of bridging thiophene units n all meet with expectations from prior studies on linear oligothiophenes. A relatively fast internal conversion process (>0.6 ns(-1)) is observed in both dendrimer series, possibly due to increased twisting about the phenyl core that reduces the triplet yields considerably with respect to oligothiophenes. An anomalous shifting of the triplet-triplet absorption spectra characterizes the 4G1-nS dendrimers as unique from the 3G1-nS series in terms of the hindrance of torsional motion and confinement of excited states enforced by the arrangement of dendrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号