首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New indoline dye (DN319) having strong electron-withdrawing dicyanovinylidene moiety and octyl group in the terminal rhodanine ring gave higher efficiency than D205, which was known as an excellent organic dye sensitizer. This result is attributed to the bathochromic shift in the UV-vis absorption band and positive shift in the Eox level of DN319.  相似文献   

2.
An indoline dye attached with a carboxylated indan-1,3-dione moiety linked with a hexylthiophene ring exhibited the highest conversion efficiency among six analogues and D205. This result comes from the bathochromic UV–vis absorption band, suitable energy levels, good stability for redox process, and sufficiently long excited-state lifetime.  相似文献   

3.
Four kinds of ring-fluorinated fluoresceins and sulfofluorescein from tetrafluororesorcinol and/or tetrafluorophthalic anhydride have been synthesized and the photochemical properties of the zinc oxide nanocrystalline electrode sensitized by the ring-fluorinated fluoresceins were investigated.  相似文献   

4.
The effect of N-(2-alkoxyphenyl) group in double rhodanine indoline dye on the performance of zinc oxide dye-sensitized solar cell was examined. Both Jsc and Voc were improved by introducing long alkoxy group due to prevention of H-aggregates formation and inhibition of electron recombination from zinc oxide surface to electrolyte.  相似文献   

5.
A series of new organic dyes containing an electron-deficient diphenylquinoxaline moiety was synthesized and employed as the photosensitizers in dye-sensitized solar cells (DSSCs). The multiple phenyl rings in the peripheral positions of the dye structure provide a hydrophobic barrier to slow down the charge recombination. The photophysical and electrochemical properties of these dyes were investigated in detail. The cell performance and the associated photophysical and electrochemical properties can be easily tuned by the modification of the aromatic fragments within the π spacer. Dye CR204-based DSSC reached the best energy conversion efficiency of 6.49% with an open-circuit voltage of 666 mV, a short-circuit photocurrent density of 14.9 mA cm−2, and a fill factor of 0.66. The IPCE of CR204-based DSSC covers the light-harvesting to NIR region.  相似文献   

6.
Dye-sensitized solar cells(DSSCs) have attracted significant attention as alternatives to conventional silicon-based solar cells owing to their low-cost production,facile fabrication,excellent stability and high power conversion efficiency(PCE).The dye molecule is one of the key components in DSSCs since it significant influence on the PCE,charge separation,light-harvesting,as well as the device stability.Among various dyes,easily tunable phenothiazine-based dyes hold a large proportion and achieve impressive photovoltaic performances.This class of dyes not only has superiorly non-planar butterfly structure but also possesses excellent electron donating ability and large π conjugated system.This review summarized recent developments in the phenothiazine dyes,including small molecule phenothiazine dyes,polymer phenothiazine dyes and phenothiazine dyes for co-sensitization,especially focused on the developments and design concepts of small molecule phenothiazine dyes,as well as the correlation between molecular structures and the photovoltaic performances.  相似文献   

7.
Functional organic dyes have promising prospect in dye-sensitized solar cells as a crucial element, of which sensitizers based on donor-π-acceptor are the most important dyes. On the basis of the structures of the aromatic amine donors such as triphenylamine and indoline, this paper reviews the photoelectric conversion properties of organic sensitizers since 2008, and highlights research work in our laboratory in this area.  相似文献   

8.
Four novel symmetrical organic dyes (S1-S4) configured with acceptor-donor-acceptor (A-D-A) structures containing electron donating fluorene (S1 and S2) and N-alkyl dithieno[3,2-b:2′,3′-d]pyrrole (DTP) (S3 and S4) cores terminated with two anchoring cyanoacrylic acids (as electron acceptors) were synthesized and applied to dye-sensitized solar cells (DSSCs). The DSSC device based on S2 dye showed the best photovoltaic performance among S1-S4 dyes: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 76%, a short circuit current (JSC) of 12.27 mA/cm2, an open circuit voltage (VOC) of 0.61 V, a fill factor (FF) of 0.63, and an overall power conversion efficiency (η) of 4.73%. Besides, the utilization of chenodoxycholic acid (CDCA) as a co-adsorbent in the DSSC device based on S3 dye showed a significant improvement in its η value (from 3.70% to 4.31%), which is attributed to the suppression of dye aggregation on TiO2 surface and thus to increase the JSC value eventually.  相似文献   

9.
The preparation of nanostructured mixed metal oxide based on a sol-gel method with surfactant-assisted mechanism, and its application for dye-sensitized solar cell (DSSC) are reported. The mixed zirconia (ZrO2) and titania (TiO2) mesoporous powder possessed larger surface area than the corresponding titania. For the UV action spectra of unsensitized photochemical cell, the mixed zirconia/titania electrode can absorb UV light below 380 nm, corresponding to band gap (Eg) around 3.27 eV, which is higher than that of pure component of titania (). Both of these improved properties, i.e., BET surface area and band gap, contributed to the improvement on a short-circuit photocurrent up to 11%, an open-circuit voltage up to 4%, and a solar energy conversion efficiency up to 17%, for the DSSC fabricated by mesoporous zirconia/titania mixed system when compared to the cell that was fabricated only by nanostructured TiO2. The cell fabricated by 5 μm thick mixed TiO2-ZrO2 electrode gave the short-circuit photocurrent about 13 mA/cm2, open-circuit voltage about 600 mV and the conversion efficiency 5.4%.  相似文献   

10.
Applicability of silanols to dye-sensitized solar cells was investigated for the first time with bis(4-azobenzene)silanediol as a model compound. The silanol dye showed high adsorption ability on the surface of TiO2 electrode and effective electron transfer from the light-excited dye to the electrode was confirmed, exhibiting the effectiveness of the silanol dyes for the sensitizers.  相似文献   

11.
Four new 5-phenyl-iminostilbene dyes (ISB-36) containing electron-withdrawing benzo-[c][1,2,5]thiadiazole have been designed and synthesized for use as DSSCs. Their absorption properties and electrochemical and photovoltaic performances have been investigated systematically. Among these dyes, DSSCs based on a dye containing benzo-[c][1,2,5]thiadiazole and benzene moieties (ISB-4) showed the best performance: a short-circuit photocurrent density (Jsc) of 13.69 mA cm−2, an open-circuit photovoltage (Voc) of 722 mV, and a fill factor (FF) of 0.71, which corresponds to a power conversion efficiency (PCE) of 6.71%, under optimized conditions. Additionally, long-term stability of the ISB-4 based DSSCs with ionic-liquid electrolytes was demonstrated under 1000 h of light soaking, the photovoltaic performance is up to 5.75%. The results suggest that 5-phenyl-iminostilbene containing dyes are promising candidates for application in DSSCs.  相似文献   

12.
We synthesized three metal-free organic dyes (H11H13) consisting of a 3,6-disubstituted carbazole, benzothiadiazole, and cyanoacrylic acid. All the dyes exhibited high molar extinction coefficients and suitable energy levels for electron transfer from the electrolyte to the TiO2 nanoparticles. Under standard AM 1.5G solar irradiation, the device using dye H13 with co-adsorbed chenodeoxycholic acid (CDCA) displayed the best performance: an open-circuit voltage (Voc) of 0.71 V, a short-circuit current density (Jsc) of 12.69 mA cm−2, a fill factor (FF) of 0.71, and a power conversion efficiency (PCE) of 6.32%. The PCE was ∼79% of that for commercially available N719 cells (8.02%) under the same conditions.  相似文献   

13.
We have synthesized a series of new dipolar organic dyes Bn (n=0, 1, 2) employing triarylamine as the electron-donor, 2-cyanoacrylic acid as the electron-acceptor, and fluorenevinylene as the conjugated bridge, which were used as sensitizers in dye-sensitized solar cells. It is found that the solar-energy-to-electricity conversion efficiencies of the prepared DSSCs are in the range of 2.79-5.56%, which reach 35-70% of a standard device based on N719 fabricated and measured under the same conditions. The DSSC sensitized with B1 with balanced length of conjugated bridge shows the highest photo-to-electrical energy conversion efficiency and the open-circuit photovoltage (Voc) of 0.86 V.  相似文献   

14.
The influence of pyrimidine additives on the performance of a bis(tetrabutylammonium)cis-bis(thiocyanato)bis(2,2′-bipyridine-4-carboxylic acid, 4′-carboxylate)ruthenium(II) dye-sensitized TiO2 solar cell with an I/I3 redox electrolyte in acetonitrile was studied. The current–voltage characteristics were measured for more than 10 different pyrimidine derivatives under AM 1.5 (100 mW/cm2). The pyrimidine additives tested had varying effects on the performance of the cell. The additives drastically enhanced the open-circuit photovoltage (Voc) and the solar energy conversion efficiency (η), but usually reduced the short circuit photocurrent density (Jsc) of the solar cell. Physical and chemical properties of the pyrimidines were computationally calculated in order to determine the reasons for the additive effects on cell performance. Consequently, the greater the calculated partial charge of the nitrogen atoms in the pyrimidine groups, the larger the Voc but the smaller the Jsc values. The Voc of the cell also increased as the ionization energy of the pyrimidine molecules decreased. Moreover, as the calculated dipole moment of the pyrimidine derivatives increased, the Jsc value was reduced, but the Voc value was enhanced. These results suggest that the electron donicity of pyrimidine additives influenced the interaction with TiO2 electrode and I/I3 electrolyte, which lead to the changes in dye-sensitized solar cell performance.  相似文献   

15.
16.
17.
二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论(DFT)和含时密度泛函理论(TD-DFT)对四种二氢吲哚染料进行研究, 从中筛选出相对优秀的染料敏化太阳能电池光敏剂. 对前线分子轨道的计算表明, 二氢吲哚染料的前线分子轨道结构非常有利于染料激发态向TiO2电极的电子注入. 对真空中的紫外和可见光吸收光谱的计算表明, 二氢吲哚染料的吸收光谱与太阳辐射光谱匹配较好. 对染料分子的能级计算表明, 二氢吲哚染料的能级结构比较适合于I-/I-3作电解液的TiO2纳米晶太阳能电池的光敏剂. 二氢吲哚染料最低未占据分子轨道(LUMO) 能级均比TiO2晶体导带边能级高, 能够保证激发态染料分子高效地向TiO2电极转移电子. 二氢吲哚染料最高占据分子轨道(HOMO)的能级比I-/I-3能级低, 保证了失去电子的染料分子能够顺利地从电解液中得到电子. 与实验数据比较, 得出在提高染料敏化太阳能电池转换效率方面, 对染料的关键要求是LUMO能级的位置. 染料分子的稳定性是染料敏化太阳能电池使用寿命的关键因素. 通过对化学键键长的比较表明, 二氢吲哚染料的分子稳定性基本相同. 对计算结果的分析表明, 二氢吲哚染料1(ID1)的LUMO能级最高, 分子稳定性最好, 在酒精溶液中的吸收光谱与太阳辐射光谱匹配很好, 在同类染料中是较好的染料敏化太阳能电池光敏剂.  相似文献   

18.
《印度化学会志》2022,99(1):100289
This work is concerned with the comparative study of dye-sensitized solar cell (DSSC) utilizing selenium (Se) and palladium (Pd) cathode. The influence of concentration of selenium dioxide (SeO2) and palladium chloride (PdCl2) on the performance of the device has been investigated. The Se and Pd cathode have been prepared via dip coating-based multilayer deposition technique. The device using Se cathode with seven layers possesses the highest performance in term of short-circuit current density (Jsc). The photovoltaic measurement results show that the device utilizing Pd cathode demonstrates higher power conversion efficiency (η) compared with that of the device using Se cathode. The highest η of the device with Se and Pd cathode are 0.071 and 0.169%, obtained at the 0.5 ?M SeO2 and 0.60 ?M PdCl2, respectively. The Pd cathode-based device prepared with 0.60 ?M PdCl2 owns the highest η due to the lowest sheet resistance (Rs). These photovoltaic results imply single material has potential to be modified into binary or ternary cathode material in order to improve the performance of DSSC.  相似文献   

19.
Duckhyun Kim  Jaejung Ko 《Tetrahedron》2007,63(9):1913-1922
Organic dyes containing N-aryl carbazole moiety are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-25 sensitized cell gave a short circuit photocurrent density (Jsc) of 11.50 mA cm−2, an open circuit voltage (Voc) of 0.68 V, a fill factor of 0.66, corresponding to an overall conversion efficiency η of 5.15%, and the maximum incident monochromatic photon-to-current conversion efficiency (IPCE) of 77% at 430 nm.  相似文献   

20.
In the past three decades, dye-sensitized solar cells (DSSCs) have gained increased recognition as a potential substitute for inexpensive photovoltaic (PV) devices, and their maximum efficiency has grown from 7% to 14.3%. Recent developments in DSSCs have attracted a plethora of research activities geared at realizing their full potential. DSSCs have seen a revival as the finest technology for specific applications with unique features such as low-cost, non-toxic, colourful, transparent, ease of fabrication, flexibility, and efficient indoor light operation. Several organic materials are being explored and employed in DSSCs to enhance their performance, robustness, and lower production costs to be viable alternatives in the solar cell markets. This review provides a concise summary of the developments in the field over the past decade, with a special focus on the incorporation of organic materials into DSSCs. It covers all elements of the DSSC technology, including practical approaches and novel materials. Finally, the emerging applications of DSSCs, and their future promise are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号