首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New highly fluorescent bifunctional anthracenes showed high thermal and electrochemical stability, and great potential as both blue emitters and hole-transporters for OLEDs. Deep-blue and Alq3-based green devices with maximum efficiencies and CIE coordinates of 1.65 and 6.25 cd A(-1), and (0.15, 0.16) and (0.26, 0.49) were achieved, respectively.  相似文献   

2.
New 9,10-substituted anthracene derivatives were designed and synthesized for application as blue-emitting and hole-transporting materials in electroluminescent devices. They were characterized by H NMR, C NMR, FTIR, UV–vis, PL spectroscopy, and mass spectrometry. The theoretical calculation of three-dimensional structure and the energy densities of HOMO and LUMO states, as well as optical properties of these new obtained materials, supported the claim that they had non-coplanar structures. Their optical, thermal, and electrochemical properties could be tuned by varying the peripheral substituents. All of them were electrochemically and thermally stable molecules. Materials having electron donating triphenylamine as peripheral substituents showed promising potential as both blue light-emitting materials and hole-transporting materials for electroluminescent devices. Efficient blue and Alq3-based green OLEDs with maximum luminance efficiencies and CIE coordinates of 1.65 cd/A and (0.15, 0.16) and 6.25 cd/A and (0.26, 0.49) were achieved, respectively.  相似文献   

3.
A series of anthracene derivatives are synthesized and fabricated as light-emitting materials in OLED devices. The incorporation of the chalcogen atoms, either oxygen or sulfur, in between the anthracene moiety and the alkyl or aryl substituents affected drastically the photo- and electroluminescence properties of the materials, especially the HOMO-LUMO band gap and the emitting color of the devices. The new anthracene sulfide derivatives represent a new design for further modification of other light-emitting doped materials.  相似文献   

4.
A series of new dispiro[fluorene-9',6,9',12-indeno[1,2b]fluorenes] (DSF-IFs) has been synthesised. These new building blocks for blue-light-emitting devices and electroactive polymers combine indenofluorene (IF) and spirobifluorene (SBF) properties. We report here our synthetic investigations towards these new structures and their thermal, structural, photophysical and electrochemical properties. These properties have been compared to those of IF and SBF. We also report the anodic oxidation of DSF-IFs that leads to the formation of non-soluble transparent three-dimensional polymers. The structural and electrochemical behaviour of these polymers has been studied. The first application of these building blocks as new blue-light-emitting materials in organic light-emitting diodes (OLED) is also reported.  相似文献   

5.
This article presents an overview of the work that has been done recently in our laboratory concerning the development and application of new conjugated materials with tunable properties. We have designed polymers containing oligo(phenylenevinylene)-type conjugated segments of well defined size and structure isolated either in their main-chain or in the side-chains. Model oligomers corresponding to the conjugated parts of the polymers have also been studied. We show how these materials perform in light-emission applications (light-emitting diodes, lasers) or photovoltaic cells.  相似文献   

6.
Stable carbazole derivatives that contain peripheral diarylamines at the 3- and 6-positions and an ethyl or aryl substituent at the 9-position of the carbazole moiety have been synthesized via palladium-catalyzed C-N bond formation. These new carbazole compounds (carbs) are amorphous with high glass transition temperatures (T(g), 120-194 degrees C) and high thermal decomposition temperatures (T(d) > 450 degrees C). The compounds are weakly to moderately luminescent in nature. The emission wavelength ranges from green to blue and is dependent on the substituent at the peripheral nitrogen atoms. Two types of light-emitting diodes were constructed from carb: (I) ITO/carb/TPBI/Mg:Ag and (II) ITO/carb/Alq(3)/Mg:Ag, where TPBI and Alq(3) are 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene and tris(8-hydroxyquinoline) aluminum, respectively. In type I devices, the carb functions as the hole-transporting as well as emitting material. In type II devices, either carb, or Alq(3) is the light-emitting material. Several green light-emitting devices exhibit exceptional maximum brightness, and the physical performance appears to be better than those of typical green light-emitting devices of the structure ITO/diamine/Alq(3)/Mg:Ag. The relation between the LUMO of the carb and the performance of the light-emitting diode is discussed.  相似文献   

7.
Transition metal complexes have emerged as promising candidates for applications in solid-state electroluminescent devices. These materials serve as multifunctional chromophores, into which electrons and holes can be injected, migrate and recombine to produce light emission. Their device characteristics are dominated by the presence of mobile ions that redistribute under an applied field and assist charge injection. As a result, an efficiency of 10 lm/W--among the highest efficiencies reported in a single layer electroluminescent device--was recently demonstrated. In this article we review the history of electroluminescence in transition metal complexes and discuss the issues that need to be addressed for these materials to succeed in display and lighting applications.  相似文献   

8.
A series of oligofluorene-thiophenes end-capped with 3,6-di-tert-butylcarbazole and pyrene were designed and synthesized for application as color tunable emissive materials for organic electroluminescent devices. They were characterized by 1H NMR, 13C NMR, FT-IR, UV–vis, PL spectroscopy, and mass spectrometry. Theoretical calculations revealed that the carbazole moiety attached to the end of the molecule is nearly perpendicular to oligofluorene-thiophene-pyrene plane and π-electrons in the ground state delocalize over the entire molecule. Their optical, thermal, and electrochemical properties could be tuned by varying the number of thiophene units in the molecule. All were electrochemically and thermally stable molecules. OLED devices of these materials emitted brightly in various colors from deep blue to orange. Particularly, deep blue (CIE coordinates of 0.16, 0.14) and green (CIE coordinates of 0.27, 0.61) devices showed high color quality close to the NTSC standards with high luminance efficiencies of 1.14 and 11.15 cd/A, respectively.  相似文献   

9.
Molecular level parameters are investigated computationally to understand the factors that are responsible for the higher efficiency in derivatives of 9,10-bis(1-naphthyl)anthracene (alpha-ADN), 9,10-bis(2-naphthyl)anthracene (beta-ADN), their tetramethyl derivatives (alpha,beta-TMADN) and the t-Bu derivative (beta-TBADN) as blue light emitting electroluminescent (EL) layers in organic light emitting diodes (OLEDs). DFT studies at the B3LYP/6-31G(d,p) level have been carried out on the substituted anthracenes. The absorption spectra are simulated using time dependent DFT methods (TD-DFT) whereas the emission spectra are approximated by optimizing the excited state by HF/CI-Singles and then carrying out the vertical CI calculations by the TD-DFT method. The reorganization energy for estimating the hole and electron transport is calculated. The transfer integrals between parallely stacked molecules in the bulk state are estimated by calculating the electronic splitting. The substituted anthracenes are compared with unsubstituted anthracene and yet untested 9,10-dianthrylanthracene (TANTH). A larger and slower buildup of the electrons and holes in the EL layer, due to the higher reorganization energy and smaller electronic coupling between the adjacent molecules could lead to an increase in hole-electron recombination in the layer and thus increase the efficiency.  相似文献   

10.
We synthesized low molecular weight triphenyldiamines (TPDs), novel 1,3,5-tris(diarylamino)benzenes (TDABs), polymeric triphenyldiamines and insoluble triphenylamine networks based on tris(4-ethynylphenyl)amine as hole transport materials for electroluminescent displays. The HOMO energy values as determined from cyclic voltammetry measurements for TPDs and TDABs are between −4.97 and −5.16 eV. By using a polymeric TPD as hole transport layer and tris(8-quinolinolato) aluminium as emitter, LEDs with an onset voltage of 3V and a luminance up to 900 cd/m2 were obtained under ambient conditions.  相似文献   

11.
On account of the advantages of organic electroluminescent materials compared with their inorganic counterparts,the development of organic electroluminescent materials is one of the hot areas of the optoelectronic materials.Fluorene and its derivatives,which have an aromatic biphenyl structure with a wide energy gap in the backbones and high luminescent efficiency,have drawn much attention of ma-terial chemists and device physicists.However,one drawback of fluorene-based electroluminescent blue materials is that there is an occurrence of long wavelength emission after annealing the films in air or after operating organic light-emitting diodes for a long time.To clarify the origin of this long wave-length emission,the scientists at home and abroad have put forward all kinds of correlative explana-tions.Among the scientists,some thought it was caused by excimer-related species,while some others claimed that it was caused by the fluorenone of photooxdized fluorene.The corresponding solutions to this problem have also been proposed and the problem has been partially resolved in some degree.The present review summarizes and analyzes the progress made on the origin of long wavelength emission in fluorene-based electroluminescent blue materials at home and abroad in the past few years.Some issues to be addressed and hotspots to be further investigated are also presented and discussed.  相似文献   

12.
Three new chelate zinc complexes with azomethine groups characterized by luminescence in the visible spectral region were synthesized: bis(N-(2-oxybenzylidene)cyclohexylamine)zinc, bis(N-(2-oxybenzylidene)-4-tert-butylaniline)zinc, and N,N′-bis(oxybenzylidene)-1,2-phenylenediaminezinc. Their spectral properties were studied. Based on these complexes, we prepared electroluminescence devices giving an intense emission in the blue, green, and red spectral regions.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2056–2059, October, 2004.  相似文献   

13.
[structure: see text] New functionalized mono- and bis-benzo[b]furan derivatives were synthesized and developed as blue-light emitting materials. They possessed a CN, CHO, CH=CHPh, CH=CPh(2), or CH=CHCOOH group at the C4-position. Two benzo[b]furan nuclei in bis-benzo[b]furan derivatives were connected by a divinylbenzene bridge. With good volatility and thermal stability, bis-benzo[b]furan 7a was fabricated as a device. It emitted blue light with brightness 53430 cd/m(2) (at 15.5 V) and high maximum external quantum efficiency 3.75% (at 11 V).  相似文献   

14.
The photophysical, electrochemical, and optoelectronic properties of conjugated systems incorporating dibenzophosphole or phosphole moieties are described. Dibenzophosphole derivatives are not suitable materials for OLEDs due to their weak photoluminescence (PL) in the solid state and the instability of the devices. Variation of the substitution pattern of phospholes and chemical modification of their P atoms afford thermally stable derivatives, which are photo- and electroluminescent. Comparison of the optical properties of solution and thin film of thioxophospholes shows that these compounds do not form aggregates in the solid state. This property, which is also supported by an X-ray diffraction study of three novel derivatives, results in an enhancement of the fluorescence quantum yields in the solid state. In contrast, (phosphole)gold(I) complexes exhibit a broad emission in thin film, which is due to the formation of aggregates. Single- and multilayer OLEDs using these P derivatives as the emissive layer have been fabricated. The emission color of these devices and their performances vary with the nature of the P material. Interestingly, di(2-thienyl)thiooxophosphole is an efficient host for the red dopant DCJTB, and devices using the gold complexes have broad emission spectra.  相似文献   

15.
Equilibrium ground state geometry configurations and their relevant electronic properties of four experimentally reported asymmetric spirosilabifluorene derivatives are calculated by the HF(DFT)/6-31G(d) method. Their excited state geometries are investigated using the CIS/6-31G(d) method. The absorption and emission spectra are evaluated using the TD-B3LYP/6-31G(d) and TD-PBE0/6-31+G(d) levels both in gas phase and CHCl3 solvent. Our results show an excellent agreement with the experimental data on their optical properties. To predict the substitution effect, the H/R (R = –NO2, –CN, –NH2 and –OCH3) substituted symmetric and asymmetric spirosilabifluorene derivatives are also investigated, and the optical properties of H/R substituted derivatives are predicted in gas phase and CHCl3 solvent. In comparison with the parent compound, significant red-shift is predicted for the emission spectra of the di-substituted symmetric derivatives with –NH2 (96 nm), –OCH3 (61 nm) and the push–pull (containing both –NH2 and –NO2) derivative (56 nm). It is found that the performance and the optical properties of these derivatives can be improved by adding push–pull substitutents. The largest change in the electronic and optical properties of this system can be obtained upon symmetric di-substitution among mono-, di-, tri- and tetra-substitutions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Novel hole and electron transporting materials have been synthesized to improve the thermal stability of organic electroluminescent (EL) devices. Molecular structures of such hole and electron transporting materials were designed based on triphenylamine (TPA) and oxadiazole (OXD) moieties, respectively. It has been found that the resulting materials have high glass transition temperatures (Tg) over 100°C and the vacuum-deposited thin films are significantly thermally stable. For the two-layer EL devices using the novel hole transporting materials and the typical emitting material, tris(8-quinolinolato) aluminum, the thermal stability has been clearly seen to depend on the Tg of the hole transporting material; excellent thermal stability was achieved. For the three-layer EL device using the novel electron transporting material, good emission efficiency and good stability were achieved. The electron transporting materials have been also applied to the polymeric system with polyvinylcarbazole matrix.  相似文献   

17.
[reaction: see text] The fluorescence properties of selected derivatives of 6-methoxyanthracene-2-carboxylic acid were studied. The corresponding ester and oxazoline derivatives exhibit a moderate solvatochromism, which is caused by the donor-acceptor interplay. The fluorescence band shift and intensity of oxazoline 1f may be reversibly modulated by protonation or complexation with silver ions; thus, the oxazoline heterocycle serves as a useful substituent with switchable acceptor strength.  相似文献   

18.
A t-butyl substituted red fluorescent dye, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), has been found to be an excellent dopant in AIQ3 which produces a highly efficient organic EL device with improved red chromaticity. Unlike 4-(dicyanomethylene)-2-methyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJT), DCJTB can be synthesized in a pure form directly from the unsymmetrical 4-(dicyanomethylene)-2-(t-butyl)-6-methyl-4H-pyran without the contamination of the non-fluorescent bis-condensation byproduct which is prevalent in the DCJT preparation. Both photoluminescence and electroluminescence in the solid films of DCJTB in AlQ3 are modestly enhanced by the extra t-butyl substitution as a result of a reduction in the effect of concentration quenching. The operation stability of the DCJTB doped EL device is superior, having a half-life of over 5,000 h driven at an initial brightness > 400 cd/m2.  相似文献   

19.
Triple-layer-type organic electroluminescent devices were fabricated using charge-transporting poly(N-vinylcarbazole) (PVK) as a hole-transporting emitter layer. Electron-transporting layers consisting of a triazole derivative (TAZ) and an aluminum complex (Alq) layer were used to maximize the carrier recombination efficiency. The EL device with a structure of glass substrate/indium-tinoxide/PVK/TAZ/AIq/Mg:Ag showed bright blue emission from the PVK layer with a luminance of over 700 cd/m2. The emission color was tuned to a desirable color in the visible region through doping the PVK layer with fluorescent dyes. Bright white emission, in particular, was obtained for the first time at a high luminance level of over 3000 cd/m2 by using three kinds of fluorescent dyes each emitting red, green or blue.  相似文献   

20.
A novel multifunctional 1,6-bis(2-hydroxyphenyl)pyridine boron bis(4-n-butyl-phenyl)phenyleneamine compound in which the hole-transporting (HT), electron-transporting (ET), and emitting (EM) components are integrated into a single molecule was synthesized and used as an emitting material to fabricate an efficient single-layer electroluminescent device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号