首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coumarin-based alkyne was developed as a fluorescent chemodosimeter for the selective detection of mercuric ion. The probe showed a highly selective and ratiometric response toward Hg(II) ion over other metal ions with a micromolar level of limit of detection.  相似文献   

2.
The condensation of 4,5-dimethoxy-2-(morpholin-4-yl)aniline with anthracene-9-carbaldehyde gave N-(anthracen-9-ylmethyl)-4,5-dimethoxy-2-(morpholin-4-yl)aniline, a selective and efficient fluorescent chemosensor for mercury(II) cations.  相似文献   

3.
We report on a fluorescence resonance energy transfer (FRET)-based ratiometric sensor for the detection of Hg(II) ion. First, silica nanoparticles were labeled with a hydrophobic fluorescent nitrobenzoxadiazolyl dye which acts as a FRET donor. A spirolactam rhodamine was then covalently linked to the surface of the silica particles. Exposure of the nanoparticles to Hg(II) in water induced a ring-opening reaction of the spirolactam rhodamine moieties, leading to the formation of a fluorescent derivative that can serve as the FRET acceptor. Ratiometric sensing of Hg(II) was accomplished by ratioing the fluorescence intensities at 520 nm and 578 nm. The average decay time for the donor decreases from 9.09 ns to 7.37 ns upon addition of Hg(II), which proves the occurrence of a FRET process. The detection limit of the assay is 100 nM (ca. 20 ppb). The sensor also exhibits a large Stokes shift (>150 nm) which can eliminate backscattering effects of excitation light.
Figure
A FRET-based ratiometric sensing system for Hg in water is built within the core/shell silica nanoparticle. This architecture ensures the control over the location of donor and acceptor, affording the system preferable for ratiometric sensing.  相似文献   

4.
A selective, sensitive probe for Hg(II) ions, 7-(diethylamino)-3-methyl-2H-benzo[b][1,4] oxazine-2-thione (1), is developed. Compound 1 behaves as a ratiometric probe, exhibiting a large blue shift of 100 nm in its absorption spectra upon exposure to Hg(II) ions. The dramatic color change of the solution made ‘naked-eye’ detection of Hg(II) ions possible. Emission spectra of 1 displayed a selective enhancement in intensity in the presence of Hg(II) ions. ESI+-MS analysis indicated that Hg2+-induced desulfurization caused the large absorption response.  相似文献   

5.
A new, two-step synthesis has been developed for a series of bis-DPA-type ligands whose dinuclear Zn(II) complexes function as fluorescent anion sensors. The Zn(II) complexes exhibit good selectivity for PPi over other anions in aqueous medium (pH 7.5) and may be used to monitor the extent of enzyme-catalysed reactions, in which PPi is produced or consumed.  相似文献   

6.
A new fluorescent ‘‘on–off' chemosensor for Hg2+initiated by a derivative of rhodamine B was designed and synthesized. Compound 1 exhibited high sensitivity and selectivity for Hg2+over other commonly coexistent metal ions in aqueous media. Upon the addition of Hg2+, the spirocyclic ring of probe is opened and a significant enhancement of visible color and fluorescence in the range of 500–600 nm is observed. The colorimetric and fluorescent response to Hg2+can be conveniently detected by the naked eye, which provides a facile method for visual detection of Hg2+. From the molecular structure and spectral results of 1, an irreversible, hydrolysis, desulfurization reaction mechanism is proposed.  相似文献   

7.
Two new highly selective colorimetric chemosensors for Hg2+, based on azobenzene and highly selective Hg2+‐promoted deprotection of a dithioacetal have been designed and synthesized. In the presence of as little as 20 μM Hg2+, the sensors change their color from light yellow to deep red, which can easily be observed by the naked eye. The underlying signaling mechanism is intramolecular charge transfer (ICT). The sensors have good selectivity for Hg2+ with respect to several common alkali, alkaline earth, and transition metal ions. Furthermore, they can be used for in‐the‐field measurements by virtue of a dipstick approach without any additional equipment.  相似文献   

8.
A sensitive sensor for mercury (II) and copper (II) synchronous detection was established via the changed photoluminescence of CdTe quantum dots (QDs) multilayer films in this work. QDs were deposited on the quartz slides to form QDs-multilayer films by electrostatic interactions with poly(dimethyldiallyl ammonium chloride) (PDDA). Hg2+ or Cu2+ could quench the photoluminescence of the QDs-multilayer films, and glutathione (GSH) was used to remove Hg2+ or Cu2+ from QDs-multilayer films due to strong affinity of GSH-metal ions, which resulted in the recovered photoluminescence of QDs-multilayer films. There are good linear relationships between the metal ions concentration and the photoluminescence intensity of QDs in the quenched and recovered process. It was found that the Stern–Volmer constants for Hg2+ are higher than that for Cu2+. Based on different quenching and recovery constant between Hg2+ and Cu2+, the synchronous detection of Hg2+ and Cu2+ can be achieved. The linear ranges of this assay were obtained from 0.005 to 0.5 μM for Hg2+ and from 0.01 to 1 μM for Cu2+, respectively. And the artificial water samples were determined by this method with satisfactory results, the recoveries for Hg2+ and Cu2+ ions were found in the range of 90.4–106.4%. To the best of our knowledge, it is the first report about the synchronous detection of Hg2+ and Cu2+ by using quenched and recovered photoluminescence of quantum dots multilayer films.  相似文献   

9.
A new multi-responsive fluorescent switch DTE-Pip-Rho 1O has been designed and synthesized in this study. For this molecule, the reactive site of spirolactam ring is far away from the diarylethene unit through the intramolecular piperazine. It exhibited high selectivity and sensitivity to Hg2+ in addition to obvious color change (colorless-pink) and fluorescence “off-on” (dark-orange) during this process. It is believed that the color change is due to Hg2+-assisted hydrolysis of rhodamine hydrazide. Therefore, the new molecule can be used as colorimentric and fluorescent chemosensor for Hg2+ with high selectivity. The detection limits of absorbance and fluorescence for Hg2+ were calculated to be 1.15?μM and 1.16?μM, respectively. The resulting DTE-Pip-Rho 1O-Hg2+ could also function as a reversible fluorescence photo-switch in response to UV/vis light owing to FRET mechanism. Moreover, it has been demonstrated that the photo-switchable system displayed excellent fatigue resistance and remarkable anti-photobleaching capability.  相似文献   

10.
The ability to image the concentration of transition metals in living cells in real time is important for further understanding of transition metal homeostasis and its involvement in diseases. The goal of this study was to develop a genetically encoded FRET-based sensor for copper(I) based on the copper-induced dimerization of two copper binding domains involved in human copper homeostasis, Atox1 and the fourth domain of ATP7B (WD4). A sensor has been constructed by linking these copper binding domains to donor and acceptor fluorescent protein domains. Energy transfer is observed in the presence of Cu(I), but the Cu(I)-bridged complex is easily disrupted by low molecular weight thiols such as DTT and glutathione. To our surprise, energy transfer is also observed in the presence of very low concentrations of Zn(II) (10(-)(10) M), even in the presence of DTT. Zn(II) is able to form a stable complex by binding to the cysteines present in the conserved MXCXXC motif of the two copper binding domains. Co(II), Cd(II), and Pb(II) also induce an increase in FRET, but other, physiologically relevant metals are not able to mediate an interaction. The Zn(II) binding properties have been tuned by mutation of the copper-binding motif to the zinc-binding consensus sequence MDCXXC found in the zinc transporter ZntA. The present system allows the molecular mechanism of copper and zinc homeostasis to be studied under carefully controlled conditions in solution. It also provides an attractive platform for the further development of genetically encoded FRET-based sensors for Zn(II) and other transition metal ions.  相似文献   

11.
A new tri-imidazolium salt, tris(4-(3-(2-((8-hydroxy-9,10-dioxo-9′,10′-dihydroanthracen-1-yl)oxy)ethyl)-1H-imidazole-3′-ium-1′-yl)phenyl)amine hexafluorophosphate was prepared and characterized. Particularly, the recognition performance of the tri-imidazolium salt for cations was investigated through fluorescence and ultraviolet titrations, MS, IR spectra and 1H NMR titrations. The results indicated that the tri-imidazolium salt can distinguish effectively copper(II) ion from other cations by the changes of spectroscopy and colour (from yellow to orange under sunlight). Furthermore, the tri-imidazolium salt was also used in detecting Cu2+ through employing smartphone with the computed detection limit down to 0.51 μM.  相似文献   

12.
Novel 2,3-bis(1H-pyrrol-2-yl)quinoxaline-functionalized hydrazones were prepared and characterized as new chemosensors for copper(II) ion. The binding properties of the compounds 4, 5, 6 and 7 for cations were examined by UV–vis, fluorescence spectroscopy, and linear sweep voltammetric experiments (LSV). The results indicate that a 1:1 stoichiometric complex is formed between compound 4 (or 5, 6, 7) and copper(II) ion, and the association constant is 1.3?×?105 M?1 for 4, 2.1?×?106 M?1 for 5, 4.1?×?105 M?1 for 6 and 8.0?×?105 M?1 for 7, respectively. The recognition mechanism between compound 4 (or 5, 6, 7) and metal ion was discussed based on their electrochemical properties, absorbance changes, and the fluorescence quenching effect when they interact with each other. Control experiments revealed that compound 4 (or 5, 6, 7) has a highly selective response to copper (II) ion.  相似文献   

13.
As the most abundant transition metal element in mammals, iron(Fe) plays a vital role in life activities. It is of great significance to study the variation of Fe3+ level in living organisms. In virtue of the advantages of high sensitivity, good selectivity and low damage to living systems, the fluorescence detection of Fe3+ has attracted much attention. Compared with the intensity-based fluorescent probe, the ratiometric fluorescent probe has less interference of environmental and can realize quantitative detection. In this study, four ratiometric Fe3+ fluorescent probes, R1, R2, R3 and R4, were designed and synthesized using fluorescence resonance energy transfer(FRET) mechanism to achieve quantitative detection of Fe3+. In the FRET systems, 1,8-naphthalimide fluorophore derivatives were adopted as donors while rhodamine B derivatives were selected as receptors. The connection sites of the donor and acceptor in R3 and R4 are different from those in R1 and R2. All the four probes showed good response and selectivity to Fe3+. The energy transfer efficiencies of R3 and R4 were obviously higher than those of R1 and R2. This work provided a promising strategy for the development of fluorescent ratiometic Fe3+sensors.  相似文献   

14.
A coumarin-based dithiane (1) was synthesized for the selective detection of Hg2+ with respect to dual chromo- and fluorogenic changing events in an aqueous solution by the mercury-promoted transformation of a dithiane group into an aldehyde functional unit. The Hg2+-selective response of the chemodosimeter was clearly observed in aqueous buffer as well as in human blood plasma medium.  相似文献   

15.
A tricarboyanine derivative (IRPP) is applied as a ratiometric near-infrared chemosensor for detecting trivalent chromium ions (Cr3+) in living cells. Upon the addition of Cr3+ to a solution of IRPP, large-scale shifts in the emission spectrum (from 755 nm to 561 nm) are observed. In the newly developed sensing system, these well-resolved emission peaks yield a sensing system that covers a linear range from 1.0 × 10−7 to 1.0 × 10−5 M with a detection limit of 2.5 × 10−8 M. The experimental results show the response behavior of IRPP towards Cr3+ is pH independent under neutral conditions (6.0–7.5). Most importantly, the fast response time (less than 3 min) and selectivity for Cr3+ over other common metal ions provide a strong argument for the use of this sensor in real world applications. As a proof of concept, the proposed chemosensor has been used to detect and quantify Cr3+ in river water samples and to image Cr3+ in living cells with encouraging results.  相似文献   

16.
Two new chemosensors (1a and 1b) based on photochromic dithienylcyclopentene were designed and synthesized, and their spectral behaviors toward various metal ions and anions were investigated in detail. Compounds show excellent optical properties and distinguish Hg2+ and F in CH3CN. Job’s plot reveals that the presence of Hg2+ induces the formation of a 1:1 complex between 1a or 1b and Hg2+. From the spectral responses and 1H NMR analysis, the deprotonation of the thioamide protons is proposed to explain the sensing mechanism for 1a and 1b toward F. It is found that 1a and 1b exhibit ring-opening and ring-closing photoisomerization with UV-vis light irradiation. Furthermore, their photochromic properties can be modulated by Hg2+ and F ions. Moreover, 1a and 1b in photostationary states become promising sensors for Hg2+ and F with high selectivity.  相似文献   

17.
《中国化学会会志》2018,65(5):597-602
A novel Cr3+‐selective ratiometric fluorescent chemosensor 1‐substitued‐2‐carbazoleylbenzoimidazole ( L ) based on benzimidazole and carbazole was synthesized and characterized by nuclear magnetic resonance (1H/13C NMR), Fourier transform infrared spectrometry (FTIR), and mass spectroscopy. L could selectively detect Cr3+ over other metal ions by UV–vis absorption and fluorescence emission spectroscopic methods in CH3CN. L showed ratiometric fluorescent recognition of Cr3+; the fluorescent responses could be observed by naked eye under a UV lamp. The binding stoichiometry ratio of the L –Cr3+ complex was found to be 1:1 according to Job’s plot and MALDI‐TOF MS analysis. The results of DFT calculation supported this conclusion.  相似文献   

18.
A simple fluorescent probe, which contains rhodamine and aminoquinoline moieties, was designed and prepared for selective detection of Hg2+ in acetonitrile. RbQ exhibited high selectivity and sensitivity toward Hg2+ over other common metal ions. The recognition of RbQ toward Hg2+ can be detected by fluorescence spectra, absorption spectra, and even by naked eyes. The binding ratio of the RbQ–Hg2+ complex was found to be 1:1 according to Job plot experiment, and the limit of detection was 1.05×10−7 M. Moreover, the prepared complex RbQ–Zn2+ (RbQZ) could detect Hg2+ in a ratiometric way and showed lower limit of detection (2.95×10−8 M) than RbQ in the same condition. Finally, we also demonstrated that the aminoquinoline–zinc complex could be served as a new and effective FRET donor for rhodamine derivatives.  相似文献   

19.
Rhodamine B hydroxylamide (1) is characterized as a highly selective and sensitive fluorescence probe for Cu2+. Under the optimized conditions, the probe exhibits specific absorbance-on and fluorescence-on responses to Cu2+ only. This remarkable property may allow Cu2+ to be detected directly in the presence of the other transition metal ions, and such an application has been demonstrated to human serum. The reaction mechanism is also investigated and proposed as that the hydroxylamide group of 1 binds Cu2+, and the subsequent complexation of Cu2+ displays a high catalytic activity for the hydrolytic cleavage of the amide bond, causing the release of fluorophore (rhodamine B) and thereby the retrievement of absorbance and fluorescence. The recovered fluorescence intensity is proportional to the concentration of Cu2+ in the range 1-20 μM. The detection limit for Cu2+ is 33 nM (k = 3). The reaction mechanism described here may be useful for developing excellent spectroscopic probes with cleavable active bonds for other analytes.  相似文献   

20.
A chelation-enhanced fluorescence method for the detection of paramagnetic copper(II) ions is developed. Two dyes with unequal metal ion binding constants are used, each giving strong fluorescence enhancement in the presence of a diamagnetic reporter ion such as cadmium(II). Upon presentation of copper(II) to a 1:1:1 mixture of the two dyes and cadmium(II), the Cd(II) is displaced from one dye to the other, resulting in quenching of one dye by the Cu(II) and enhancement of the weaker binding dye by complexation of the Cd(II). Although several criteria must be met, this method holds promise for analysis of a wide range of analytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号