首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mo(PMe(3))(6) cleaves a C-S bond of benzothiophene to give (kappa(2)-CHCHC(6)H(4)S)Mo(PMe(3))(4), which rapidly isomerizes to the olefin-thiophenolate and 1-metallacyclopropene-thiophenolate complexes, (kappa(1),eta(2)-CH(2)CHC(6)H(4)S)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)) and (kappa(1),eta(2)-CH(2)CC(6)H(4)S)Mo(PMe(3))(4). The latter two molecules result from a series of hydrogen transfers and are differentiated according to whether the termini of the organic fragments coordinate as olefin or eta(2)-vinyl ligands, respectively. The reactions between Mo(PMe(3))(6) and selenophenes proceed differently from those of the corresponding thiophenes. For example, whereas Mo(PMe(3))(6) reacts with thiophene to give eta(5)-thiophene and butadiene-thiolate complexes, (eta(5)-C(4)H(4)S)Mo(PMe(3))(3) and (eta(5)-C(4)H(5)S)Mo(PMe(3))(2)(eta(2)-CH(2)PMe(2)), selenophene affords the metallacyclopentadiene complex [(kappa(2)-C(4)H(4))Mo(PMe(3))(3)(Se)](2)[Mo(PMe(3))(4)] in which the selenium has been completely abstracted from the selenophene moiety. Likewise, in addition to (kappa(1),eta(2)-CH(2)CC(6)H(4)Se)Mo(PMe(3))(4) and (kappa(1),eta(2)-CH(2)CHC(6)H(4)Se)Mo(PMe(3))(3)(eta(2)-CH(2)PMe(2)), which are counterparts of the species observed in the benzothiophene reaction, the reaction of Mo(PMe(3))(6) with benzoselenophene yields products resulting from C-C coupling, namely [kappa(2),eta(4)-Se(C(6)H(4))(CH)(4)(C(6)H(4))Se]Mo(PMe(3))(2) and [mu-Se(C(6)H(4))(CH)C(CH)(2)(C(6)H(4))](mu-Se)[Mo(PMe(3))(2)][Mo(PMe(3))(2)H].  相似文献   

2.
The reactions of Mo(PMe3)6 towards a variety of five- and six-membered heterocyclic nitrogen compounds (namely, pyrrole, indole, carbazole, pyridine, quinoline, and acridine) have been studied to provide structural models for the coordination of these heterocycles to the molybdenum centers of hydrodenitrogenation catalysts. Pyrrole reacts with Mo(PMe3)6 to yield the eta5-pyrrolyl derivative (eta5-pyr)Mo(PMe3)3H, while indole gives sequentially (eta1-indolyl)Mo(PMe3)4H, (eta5-indolyl)Mo(PMe3)3H, and (eta6-indolyl)Mo(PMe3)3H, with the latter representing the first example of a structurally characterized complex with an eta6-indolyl ligand. Likewise, carbazole reacts with Mo(PMe3)6 to give (eta6-carbazolyl)Mo(PMe3)3H with an eta6-carbazolyl ligand. The reactions of Mo(PMe3)6 with six-membered heterocyclic nitrogen compounds display interesting differences in the nature of the products. Thus, Mo(PMe3)6 reacts with pyridine to give an eta2-pyridyl derivative [eta2-(C5H4N)]Mo(PMe3)4H as a result of alpha-C-H bond cleavage, whereas quinoline and acridine give products of the type (eta6-ArH)Mo(PMe3)3 in which both ligands coordinate in an eta6-manner. For the reaction with quinoline, products with both carbocyclic and heterocyclic coordination modes are observed, namely [eta6-(C6)-quinoline]Mo(PMe3)3 and [eta6-(C5N)-quinoline]Mo(PMe3)3, whereas only carbocyclic coordination is observed for acridine.  相似文献   

3.
Zhu G  Parkin G 《Inorganic chemistry》2005,44(26):9637-9639
Mo(PMe(3))(6) and W(PMe(3))(4)(eta(2)-CH(2)PMe(2))H undergo oxidative addition of the O-H bond of RCO(2)H to yield sequentially M(PMe(3))(4)(eta(2)-O(2)CR)H and M(PMe(3))(3)(eta(2)-O(2)CR)(eta(1)-O(2)CR)H(2) (M = Mo and R = Ph, Bu(t); M = W and R = Bu(t)). One of the oxygen donors of the bidentate carboxylate ligand may be displaced by H(2)O to give rare examples of aqua-dihydride complexes, M(PMe(3))(3)(eta(1)-O(2)CR)(2)(OH(2))H(2), in which the coordinated water molecule is hydrogen-bonded to both carboxylate ligands.  相似文献   

4.
p-tert-Butylcalix[4]arene, [CalixBut(OH)4], reacts with Mo(PMe3)6 and W(PMe3)4(eta2-CH2PMe2)H to yield compounds of composition {[CalixBut(OH)2(O)2]M(PMe3)3H2} which exhibit unprecedented use of a C-H bond of a calixarene methylene group as a binding functionality in the form of agostic and alkyl hydride derivatives. Thus, X-ray diffraction studies demonstrate that, in the solid state, the molybdenum complex [CalixBut(OH)2(O)2]Mo(PMe3)3H2 exists as an agostic derivative with a Mo...H-C interaction, whereas the tungsten complex exists as a metallated trihydride [Calix-HBut(OH)2(O)2]W(PMe3)3H3. Solution 1H NMR spectroscopic studies, however, provide evidence that [Calix-HBut(OH)2(O)2]W(PMe3)3H3 is in equilibrium with its agostic isomer [CalixBut(OH)2(O)2]W(PMe3)3H2. Dynamic NMR spectroscopy also indicates that the [M(PMe3)3H2] fragments of both the molybdenum and tungsten complexes [CalixBut(OH)2(O)2]M(PMe3)3H2 migrate rapidly around the phenolic rim of the calixarene on the NMR time scale, an observation that is in accord with incorporation of deuterium into the methylene endo positions upon treatment of the isomeric mixture of [CalixBut(OH)2(O)2]W(PMe3)3H2 and [Calix-HBut(OH)2(O)2]W(PMe3)3H3 with D2. Treatment of {[CalixBut(OH)2(O)2]W(PMe3)3H2} with Ph2C2 gives the alkylidene complex [CalixBut(O)4]W=C(Ph)Ar [Ar = PhCC(Ph)CH2Ph].  相似文献   

5.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

6.
Addition of PMe2Ph to fused-cluster syn-[(eta5-C5Me5)IrB18H20] 1 to give [(eta5-C5Me5)HIrB18H19(PMe2Ph)] 3 entails a diminution in the degree of intimacy of the intercluster fusion, rather than retention of inter-subcluster binding intimacy and a nido-->arachno conversion of the character of either of the subclusters. Reaction with MeNC gives [(eta5-C5Me5)HIrB18H19[C(NHMe)2]] 4 which has a similar structure, but with the ligand now being the carbene [:C(NHMe)2], resulting from a reductive assembly reaction involving two MeNC residues and the loss of a carbon atom.  相似文献   

7.
A stepwise reaction of p-tert-butylthiacalix[4]arene (TC4A-(OH)(4)) with [CpTiCl3]-NEt(3) and cis-[Mo(N(2))(2)(PMe(2)Ph)(4)] afforded a new Ti-Mo heterobimetallic complex [TC4A-(O)(4)Ti(micro2-C(5)H(5))MoH(PMe(2)Ph)(2)] which shows an unusual alpha-agostic micro2-eta5:eta2-coordination of a cyclopentadienyl ligand.  相似文献   

8.
The compounds [Co(2)(CO)(8)] and nido-7,8-C(2)B(9)H(13) react in CH(2)Cl(2) to give a complex mixture of products consisting primarily of two isomers of the dicobalt species [Co(2)(CO)(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (1), together with small amounts of a mononuclear cobalt compound [Co(CO)(2)(eta(5)-10-CO-7,8-C(2)B(9)H(10))] (5) and a charge-compensated carborane nido-9-CO-7,8-C(2)B(9)H(11) (6). In solution, isomers 1a and 1b slowly equilibrate. However, column chromatography allows a clean separation of 1a from the mixture, and a single-crystal X-ray diffraction study revealed that each metal atom is ligated by a terminal CO molecule and in a pentahapto manner by a nido-C(2)B(9)H(11) cage framework. The two Co(CO)(eta(5)-7,8-C(2)B(9)H(11)) units are linked by a Co-Co bond [2.503(2) ?], which is supported by two three-center two-electron B-H right harpoon-up Co bonds. The latter employ B-H vertices in each cage which lie in alpha-sites with respect to the carbons in the CCBBB rings bonded to cobalt. Addition of PMe(2)Ph to a CH(2)Cl(2) solution of a mixture of the isomers 1, enriched in 1b, gave isomers of formulation [Co(2)(CO)(PMe(2)Ph)(eta(5)-7,8-C(2)B(9)H(11))(2)] (2). Crystals of one isomer were suitable for X-ray diffraction. The molecule 2a has a structure similar to that of 1a but differs in that whereas one B-H right harpoon-up Co bridge involves a boron atom in an alpha-site of a CCBBB ring coordinated to cobalt, the other uses a boron atom in the beta-site. Reaction between 1b and an excess of PMe(2)Ph in CH(2)Cl(2) gave the complex [CoCl(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))] (3), the structure of which was established by X-ray diffraction. Experiments indicated that 3 was formed through a paramagnetic Co(II) species of formulation [Co(PMe(2)Ph)(2)(eta(5)-7,8-C(2)B(9)H(11))]. Addition of 2 molar equiv of CNBu(t) to solutions of either 1a or 1b gave a mixture of two isomers of the complex [Co(2)(CNBu(t))(2)(eta(5)-7,8-C(2)B(9)H(11))(2)] (4). NMR data for the new compounds are reported and discussed.  相似文献   

9.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

10.
The reaction of [(cod)RhCl]2 with Ph3P=C=PPh3 (1) gave the bidentate Rh(I) carbene complex, (cod)Rh[eta2-C{P(C6H4)Ph2}{PPh3}] (2), in which one of the Ph groups in 1 underwent orthometalation to form the chelate. Displacement of cod by 2 equiv of PMe3 transformed 2, via a second orthometalation event, into the Rh(III) C,C,C pincer carbene complex, HRh(PMe3)2[eta3-C{P(C6H4)Ph2}2] (3). The reaction of [Me2Pt(SMe2)]2 with 1 led directly to the analogous C,C,C pincer carbene complex of Pt(II), (Me2S)Pt[eta3-C{P(C6H4)Ph2}2] (4). DFT calculations on a model form of 3 suggest a net single sigma-bonding interaction between Rh and an sp2-hybridized carbene center, with a HOMO that is predominantly carbene pz in character.  相似文献   

11.
[Pt(CSe3)(PR3)2] (PR3= PMe3, PMe2Ph, PPh3, P(p-tol)3, 1/2 dppp, 1/2 dppf) were all obtained by the reaction of the appropriate metal halide containing complex with carbon diselenide in liquid ammonia. Similar reaction with [Pt(Cl)2(dppe)] gave a mixture of triselenocarbonate and perselenocarbonate complexes. [{Pt(mu-CSe3)(PEt3)}4] was formed when the analogous procedure was carried out using [Pt(Cl)2(PEt3)2]. Further reaction of [Pt(CSe3)(PMe2Ph)2] with [M(CO)6] (M = Cr, W, Mo) yielded bimetallic species of the type [Pt(PMe2Ph)2(CSe3)M(CO)5] (M = Cr, W, Mo). The dimeric triselenocarbonate complexes [M{(CSe3)(eta5-C5Me5)}2] (M = Rh, Ir) and [{M(CSe3)(eta6-p-MeC6H4(i)Pr)}2] (M = Ru, Os) have been synthesised from the appropriate transition metal dimer starting material. The triselenocarbonate ligand is Se,Se' bidentate in the monomeric complexes. In the tetrameric structure the exocyclic selenium atoms link the four platinum centres together.  相似文献   

12.
The reactivity of isolobal molybdenum carbonylmetalates containing a 2-boratanaphthalene, [Mo(eta5-2,4-MeC9H6BMe)(CO)3]- (5a) and [Mo(eta5-2,4-MeC9H6BNi-Pr2)(CO)3]- (5b), a 1-boratabenzene, [Mo(eta5-3,5-Me2C5H3BNi-Pr2)(CO)3]- (8), or a functionalized cyclopentadienyl ligand, the new metalate [Mo(eta5-C5H4Ph)(CO)3]- (7) and [Mo(eta5-C5H4NMe2)(CO)3]- (9), toward palladium (I and II) or platinum (I and II) complexes, such as trans-[PdCl2(NCPh)2], [Pd2(NCMe)6](BF4)2, trans-[PtCl2(PEt3)2], and [N(n-Bu)4]2 [Pt2Cl4(CO)2], has been investigated, and this has allowed an evaluation of the influence of the pi-bonded ligands on the structures and unprecedented coordination modes observed in the resulting metal-metal-bonded heterometallic clusters. The new 58 CVE planar-triangulated centrosymmetric clusters, [Mo2Pd2(eta5-C5H4Ph)2(CO)6(PEt3)2] (11), [Mo2Pd2(eta5-2,4-MeC9H6BNi-Pr2)2(CO)6] (12), [Mo(2)Pd(2)(eta5-3,5-Me2C5H3BNi-Pr2)2(CO)6] (13), [Mo2Pd2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (15), [Mo2Pt2(eta5-C5H4NMe2)2(CO)6(PEt3)2] (16), and [Mo2Pt2(eta5-C5H4NMe2)2(CO)8] (20), have been characterized by single-crystal X-ray diffraction. Their structural features were compared with those of the 54 CVE cluster [Re2Pd2(eta5-C4H4BPh)2(CO)6)] (4), previously obtained from the borole-containing metalate [Re(eta5-C4H4BPh)(CO)3]- (2), in which a 2e-3c B-C(ipso)-Pd interaction involving the pi-ring was observed. As an extension of what has been observed in 4, clusters 12 and 13 present a direct interaction of the boratanaphthalene (12) and the boratabenzene (13) ligands with palladium. In clusters 11, 15, 16, and 20, the pi-ring does not interact with the palladium (11 and 15) or platinum centers (16 and 20), which confers to these clusters a geometry very similar to that of [Mo2Pd2(eta5-C5H5)2(CO)6(PEt3)2] (3b). The carbonylmetalates [Mo(pi-ring)(CO)3]- are thus best viewed as formal four electron donors which bridge a dinuclear d9-d9 unit. The orientation of this building block in the clusters influences the shape of their metal cores and the bonding mode of the bridging carbonyl ligands. The crystal structure of new centrosymmetric complex [Mo(eta5-C5H4Ph)(CO)3]2 (10) was determined, and it revealed intramolecular contacts of 2.773(4) A between the carbon atoms of carbonyl groups across the metal-metal bond and intermolecular bifurcated interactions between the carbonyl oxygen atoms (2.938(4) and 3.029(4) A), as well as intermolecular C-H...pi(Ar)(C=C) interactions (2.334(3) and 2.786(4) A) involving the phenyl substituents.  相似文献   

13.
The thermolysis of the phosphinidene complex [Cp*P[W(CO)5]2] (1) in toluene in the presence of tBuC(triple bond)CMe leads to the four-membered ring complexes [[[eta2-C(Me)C(tBu)]Cp*(CO)W(mu3-P)[W(CO)3]][eta4:eta1:eta1-P[W(CO)5]WCp*(CO)C(Me)C(tBu)]] (4) as the major product and [[W[Cp*(CO)2]W(CO)2WCp*(CO)[eta1:eta1-C(Me)C(tBu)]](mu,eta3:eta2:eta1-P2[W(CO)5]] (5). The reaction of 1 with PhC(triple bond)CPh leads to [[W(Co)2[eta2-C(Ph)C(Ph)]][(eta4:eta1-P(W(CO)5]W[Cp*(CO)2)C(Ph)C(Ph)]] (6). The products 4 and 6 can be regarded as the formal cycloaddition products of the phosphido complex intermediate [Cp*(CO)2W(triple bond)P --> W(CO)5] (B), formed by Cp* migration within the phosphinidene complex 1. Furthermore, the reaction of 1 with PhC(triple bond)CPh gives the minor product [[[eta2:eta1-C(Ph)C(Ph)]2[W(CO)4]2][mu,eta1:eta1-P[C(Me)[C(Me)]3C(Me)][C(Ph)](C(Ph)]] (7) as a result of a 1,3-dipolaric cycloaddition of the alkyne into a phosphaallylic subunit of the Cp*P moiety of 1. Compounds 4-7 have been characterized by means of their spectroscopic data as well as by single-crystal X-ray structure analysis.  相似文献   

14.
Complexes of the type TpRu(L)(NCMe)R [L = CO or PMe3; R = Ph or Me; Tp = hydridotris(pyrazolyl)borate] initiate C-H activation of benzene. Kinetic studies, isotopic labeling, and other experimental evidence suggest that the mechanism of benzene C-H activation involves reversible dissociation of acetonitrile, reversible benzene coordination, and rate-determining C-H activation of coordinated benzene. TpRu(PMe3)(NCMe)Ph initiates C-D activation of C6D6 at rates that are approximately 2-3 times more rapid than that for TpRu(CO)(NCMe)Ph (depending on substrate concentration); however, the catalytic hydrophenylation of ethylene using TpRu(PMe3)(NCMe)Ph is substantially less efficient than catalysis with TpRu(CO)(NCMe)Ph. For TpRu(PMe3)(NCMe)Ph, C-H activation of ethylene, to ultimately produce TpRu(PMe3)(eta3-C4H7), is found to kinetically compete with catalytic ethylene hydrophenylation. In THF solutions containing ethylene, TpRu(PMe3)(NCMe)Ph and TpRu(CO)(NCMe)Ph separately convert to TpRu(L)(eta3-C4H7) (L = PMe3 or CO, respectively) via initial Ru-mediated ethylene C-H activation. Heating mesitylene solutions of TpRu(L)(eta3-C4H7) under ethylene pressure results in the catalytic production of butenes (i.e., ethylene hydrovinylation) and hexenes.  相似文献   

15.
The late-transition-metal parent amido compound [Ir(Cp*)(PMe3)(Ph)(NH2)] (2) has been synthesized by deprotonation of the corresponding ammine complex [Ir(Cp*)(PMe3)(Ph)(NH3)][OTf] (6) with KN(SiMe3)2. An X-ray structure determination has ascertained its monomeric nature. Proton-transfer studies indicate that 2 can successfully deprotonate p-nitrophenylacetonitrile, aniline, and phenol. Crystallographic analysis has revealed that the ion pair [Ir(Cp*)(PMe3)(Ph)(NH3)][OPh] (8) exists as a hydrogen-bonded dimer in the solid state. Reactions of 2 with isocyanates and carbodiimides lead to overall insertion of the heterocumulenes into the N--H bond of the Ir-bonded amido group, demonstrating the ability of 2 to act as an efficient nucleophile. Intriguing reactivity is observed when amide 2 reacts with CO or 2,6-dimethylphenyl isocyanide. eta4-Tetramethylfulvene complexes [Ir(eta4-C5Me4CH2)(PMe3)(Ph)(L)] (L=CO (15), CNC6H3-2,6-(CH3)2 (16)) are formed in solution through displacement of the amido group by the incoming ligand followed by deprotonation of a methyl group on the Cp* ring and liberation of ammonia. Conclusive evidence for the presence of the Ir-bonded eta4-tetramethylfulvene moiety in the solid state has been provided by an X-ray diffraction study of complex 16.  相似文献   

16.
Mo(PMe3)6 reacts with thiophene to give the eta5-thiophene complex (eta5-C4H4S)Mo(PMe3)3 and the eta5-butadiene-thiolate complex (eta5-C4H5S)Mo(PMe3)2(eta2-CH2PMe2), which are the first examples of (i) eta5-thiophene coordination and (ii) C-S cleavage and hydrogenation by a molybdenum compound. Deuterium labeling studies suggest that the hydrogenation of thiophene may involve an alkylidene intermediate, an observation that has ramifications for the mechanisms of hydrodesulfurization.  相似文献   

17.
The rhodium allenylidenes trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = Ph (1), p-Tol (2)] react with NaC(5)H(5) to give the half-sandwich type complexes [(eta(5)-C(5)H(5))Rh[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))] (3, 4). The reaction of 1 with the Grignard reagent CH(2)[double bond]CHMgBr affords the eta(3)-pentatrienyl compound [Rh(eta(3)-CH(2)CHC[double bond]C[double bond]CPh(2))(PiPr(3))(2)] (6), which in the presence of CO rearranges to the eta(1)-pentatrienyl derivative trans-[Rh[eta(1)-C(CH[double bond]CH(2))[double bond]C[double bond]CPh(2)](CO)(PiPr(3))(2)] (7). Treatment of 7 with acetic acid generates the vinylallene CH(2)[double bond]CH[bond]CH[double bond]=C=CPh(2) (8). Compounds 1 and 2 react with HCl to give the five-coordinate allenylrhodium(III) complexes [RhCl(2)[CH[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (10, 11). An unusual [C(3) + C(2) + P] coupling process takes place upon treatment of 1 with terminal alkynes HC[triple bond]CR', leading to the formation of the eta(3)-allylic compounds [RhCl[eta(3)-anti-CH(PiPr(3))C(R')C[double bond]C[double bond]CPh(2)](PiPr(3))] [R' = Ph (12), p-Tol (13), SiMe(3) (14)]. From 12 and RMgBr the corresponding phenyl and vinyl rhodium(I) derivatives 15 and 16 have been obtained. The previously unknown unsaturated ylide iPr(3)PCHC(Ph)[double bond]C[double bond]C[double bond]CPh(2) (17) was generated from 12 and CO. A [C(3) + P] coupling process occurs on treatment of the rhodium allenylidenes 1, 2, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(p-Anis)(2)](PiPr(3))(2)] (20) with either Cl(2) or PhICl(2), affording the ylide-rhodium(III) complexes [RhCl(3)[C(PiPr(3))C[double bond]C(R)R'](PiPr(3))] (21-23). The butatrienerhodium(I) compounds trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (28-31) were prepared from 1, 20, and trans-[RhCl[[double bond]C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] [R = CF(3) (26), tBu (27)] and diazomethane; with the exception of 30 (R = CF(3), R' = Ph), they thermally rearrange to the isomers trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C[double bond]C(R)R'](PiPr(3))(2)] (32, 33, and syn/anti-34). The new 1,1-disubstituted butatriene H(2)C[double bond]C[double bond]C[double bond]C(tBu)Ph (35) was generated either from 31 or 34 and CO. The iodo derivatives trans-[RhI(eta(2)-H(2)C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] [R = Ph (38), p-Anis (39)] were obtained by an unusual route from 1 or 20 and CH(3)I in the presence of KI. While the hydrogenation of 1 and 26 leads to the allenerhodium(I) complexes trans-[RhCl[eta(2)-H(2)C[double bond]C[double bond]C(Ph)R](PiPr(3))(2)] (40, 41), the thermolysis of 1 and 20 produces the rhodium(I) hexapentaenes trans-[RhCl(eta(2)-R(2)C[double bond]C[double bond]C[double bond]C[double bond]C[double bond]CR(2))(PiPr(3))(2)] (44, 45) via C-C coupling. The molecular structures of 3, 7, 12, 21, and 28 have been determined by X-ray crystallography.  相似文献   

18.
A series of molybdenum and tungsten organometallic oxides containing [Ru(arene)]2+ units (arene =p-cymene, C6Me6) was obtained by condensation of [[Ru(arene)Cl2]2] with oxomolybdates and oxotungstates in aqueous or nonaqueous solvents. The crystal structures of [[Ru(eta6-C6Me6]]4W4O16], [[Ru(eta6-p-MeC6H4iPr]]4W2O10], [[[Ru-(eta6-p-MeC6H4iPr)]2(mu-OH)3]2][[Ru(eta6-p-MeC6H4iPr)]2W8O28(OH)2[Ru(eta6-p-MeC6H4iPr)(H2O)]2], and [[Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) have been determined. While the windmill-type clusters [[Ru(eta6-arene)]4(MO3)4(mu3-O)4] (M = Mo, W; arene =p-MeC6H4iPr, C6Me6), the face-sharing double cubane-type cluster [[Ru(eta6-p-MeC6H4iPr)]4(WO2)2(mu3-O)4(mu4-O)2], and the dimeric cluster [[Ru(eta6-p-MeC6H4iPr)(WO3)3(mu3-O)3(mu3-OH)Ru(eta6-pMeC6H4iPr)(H2O)]2(mu-WO2)2]2- are based on cubane-like units, [(Ru(eta6-C6Me6)]2M5O18[Ru(eta6-C6Me6)(H2O)]] (M = Mo, W) are more properly described as lacunary Lindqvist-type polyoxoanions supporting three ruthenium centers. Precubane clusters [[Ru(eta6-arene)](MO3)2(mu-O)3(mu3-O)]6- are possible intermediates in the formation of these clusters. The cluster structures are retained in solution, except for [[Ru(eta6-p-MeC6H4iPr)]4Mo4O16], which isomerizes to the triple-cubane form.  相似文献   

19.
The tetrakis(trimethylphosphine) molybdenum nitrosyl hydrido complex trans-Mo(PMe(3))(4)(H)(NO) (2) and the related deuteride complex trans-Mo(PMe(3))(4)(D)(NO) (2a) were prepared from trans-Mo(PMe(3))(4)(Cl)(NO) (1). From (2)H T(1 min) measurements and solid-state (2)H NMR the bond ionicities of 2a could be determined and were found to be 80.0% and 75.3%, respectively, indicating a very polar Mo--D bond. The enhanced hydridicity of 2 is reflected in its very high propensity to undergo hydride transfer reactions. 2 was thus reacted with acetone, acetophenone, and benzophenone to afford the corresponding alkoxide complexes trans-Mo(NO)(PMe(3))(4)(OCHR'R') (R' = R' = Me (3); R' = Me, R' = Ph (4); R' = R' = Ph (5)). The reaction of 2 with CO(2) led to the formation of the formato-O-complex Mo(NO)(OCHO)(PMe(3))(4) (6). The reaction of with HOSO(2)CF(3) produced the anion coordinated complex Mo(NO)(PMe(3))(4)(OSO(2)CF(3)) (7), and the reaction with [H(Et(2)O)(2)][BAr(F)(4)] with an excess of PMe(3) produced the pentakis(trimethylphosphine) coordinated compound [Mo(NO)(PMe(3))(5)][BAr(F)(4)] (8). Imine insertions into the Mo-H bond of 2 were also accomplished. PhCH[double bond, length as m-dash]NPh (N-benzylideneaniline) and C(10)H(7)CH=NPh (N-1-naphthylideneaniline) afforded the amido compounds Mo(NO)(PMe(3))(4)[NR'(CH(2)R')] (R' = R' = Ph (9), R' = Ph, R' = naphthyl (11)). 9 could not be obtained in pure form, however, its structure was assigned by spectroscopic means. At room temperature 11 reacted further to lose one PMe(3) forming 12 (Mo(NO)PMe(3))(3)[N(Ph)CH(2)C(10)H(6))]) with agostic stabilization. In a subsequent step oxidative addition of the agostic naphthyl C-H bond to the molybdenum centre occurred. Then hydrogen migration took place giving the chelate amine complex Mo(NO)(PMe(3))(3)[NH(Ph)(CH(2)C(10)H(6))] (15). The insertion reaction of 2 with C(10)H(7)N=CHPh led to formation of the agostic compound Mo(NO)(PMe(3))(3)[N(CH(2)Ph)(C(10)H(7))] (10). Based on the knowledge of facile formation of agostic compounds the catalytic hydrogenation of C(10)H(7)N=CHPh and PhN=CHC(10)H(7) with 2 (5 mol%) was tested. The best conversion rates were obtained in the presence of an excess of PMe(3), which were 18.4% and 100% for C(10)H(7)N=CHPh and PhN=CHC(10)H(7), respectively.  相似文献   

20.
The known aryne complex (PEt3)2Ni(eta2-C6H2-4,5-F2) (1a) reacts with a catalytic amount of Br2Ni(PEt3)2 over 1% Na/Hg to afford the dinuclear Ni(I) biarylyl complex [(PEt3)2Ni]2(mu-eta1:eta1-3,4-F2C6H2-3',4'-F2C6H2) (2a), which results from a combination of C-C bond formation and C-H bond rearrangement. The dinuclear benzyne [(PEt3)2Ni]2(mu-eta2:eta2-C6H2-4,5-F2) (3) was obtained by the reaction of 1a with a stoichiometric amount of Br2Ni(PEt3)2 over excess 1% Na/Hg, and 3 was found to catalyze the conversion of 1a to 2a. The reaction of 1a with B(C6F5)3 produced the trinuclear complex (PEt3)3Ni3(mu3:eta1:eta1:eta2-4,5-F2C6H2)(mu3:eta1:eta1:eta2-4,5-F2C6H2-4',5'-F2C6H2) (6). The addition of PEt3 to 6 produced 1 equiv of 1a and 1 equiv of [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7a). Both 6 and 7a were identified as intermediates in the conversion of 1a to 2a. The analogue [(PEt3)(PMe3)Ni]2(mu-eta1:eta1-4,5-F2C6H2-4',5'-F2C6H2) (7b) was prepared by the addition of PMe3 to 6 and was structurally characterized. NMR spectroscopic evidence identified the additional asymmetric biarylyl [(PEt3)2Ni]2(mu-eta1:eta1-4,5-F2C6H2-3',4'-F2C6H2) (8a) during the conversion of 1a to 2a. The initial observation of 2 equiv of 8a for every equivalent of 2a produced from solutions of 7a suggests that 8a and 2a are formed from a common intermediate. A crossover labeling experiment shows that the C-H bond rearrangement steps in the conversion of 1a to 2a occur with the intermolecular scrambling of hydrogen and deuterium labels. The evidence collected suggests that Ni(I) complexes are capable of activating aromatic C-H bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号