首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
We report the mutually exclusive relationship between carbon nanotube (CNT) yield and crystallinity. Growth conditions were optimized for CNT growth yield and crystallinity through sequential tuning of three input variables: growth enhancer level, growth temperature, and carbon feedstock level. This optimization revealed that, regardless of the variety of carbon feedstock and growth enhancer, the optimum conditions for yield and crystallinity differed significantly with yield/crystallinity, preferring lower/higher growth temperatures and higher/lower carbon feedstock levels. This mutual exclusivity stemmed from the inherent limiting mechanisms for each property.  相似文献   

2.
We compare popular analytical techniques, including scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA), and Raman and near-infrared (NIR) spectroscopy, for the evaluation of the purity of bulk quantities of single-walled carbon nanotubes (SWNTs). Despite their importance as imaging techniques, SEM and TEM are not capable of quantitatively evaluating the purity of typical inhomogeneous bulk SWNT samples because the image frame visualizes less than 1 pg of SWNT material; furthermore, there is no published algorithm to convert such images into numerical data. The TGA technique is capable of measuring the amount of metal catalyst in an SWNT sample, but does not provide an unambiguous separation between the content of SWNTs and carbonaceous impurities. We discuss the utilization of solution-phase near-infrared spectroscopy and solution-phase Raman spectroscopy to quantitatively compare arbitrary samples of bulk SWNT materials of different purities. The primary goal of this paper is to provide the chemical community with a realistic evaluation of current analytical tools for the purity evaluation of a bulk sample of SWNTs. The secondary goal is to draw attention to the growing crisis in the SWNT industry as a result of the lack of quality control and the misleading advertising by suppliers of this material.  相似文献   

3.
Dispersions of individual single-walled carbon nanotubes of high length   总被引:1,自引:0,他引:1  
In summary, we have presented a suitable approach to obtain surfactant-stabilized suspensions of long, individually dispersed SWCNTs essentially free of bundles. The combination of mild tip and bath ultrasonication has proven effective in unbundling the SWCNT ropes and, at the same time, in minimizing tube shortening. This method is expected to be useful for applications that critically depend on the availability of bulk dispersions of long, individual tubes with minimized defect densities, such as for nanotube-based electronics and composite materials. Furthermore, the observed purification-induced changes in the electronic structure of HiPco SWCNTs indicate that care has to be taken when comparing their properties with those of the as-produced material.  相似文献   

4.
Bioelectrochemical single-walled carbon nanotubes   总被引:21,自引:0,他引:21  
Metalloproteins and enzymes can be immobilized on SWNTs of different surface chemistry. The combination of high surface area, robust immobilization and inherent nanotube electrochemical properties is of promising application in bioelectrochemistry.  相似文献   

5.
In this contribution, we describe the synthesis and covalent attachment of an analogue of the flavin mononucleotide (FMN) cofactor onto carboxylic functionalities of single-walled carbon nanotubes (SWNTs). The synthesis of FMN derivative (12) was possible by coupling flavin H-phosphonate (9) with an aliphatic alcohol, using a previously unreported N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride coupling. We found that the flavin moiety of 12-SWNT shows a strong pi-pi interaction with the nanotube side-walls. This leads to a collapsed FMN configuration that quenches flavin photoluminescence (PL). The treatment of 12-SWNT with sodium dodecyl sulfate (SDS) overcomes this strong nanotube/isoalloxazine interaction and restores the FMN into extended conformation that recovers its luminescence. In addition, redox cycling as well as extended sonication were proven capable to temporally restore PL as well. Cyclic voltammetry of FMN onto SWNT forests indicated profound differences for the extended and collapsed FMN configurations in relation to oxygenated nanotube functionalities that act as mediators. These findings provide a fundamental understanding for flavin-related SWNT nanostructures that could ultimately find a number of usages in nanotube-mediated biosensing devices.  相似文献   

6.
Here, we investigated the lithium insertion/extraction mechanism in single-walled carbon nanotubes (SWNTs) based both on the empty SWNTs and filled SWNTs, including ferrocene-filled SWNTs (Fc@SWNTs) and C60-filled SWNTs (C60@SWNTs). SWNTs, C60@SWNTs and Fc@SWNTs were systematically investigated as anode materials for Li-ion batteries. The electrochemical performance of the C60@SWNT electrode was slightly better than that of the SWNTs, and the reversible capacity of Fc@SWNTs per unit weight was ~1.7 times greater than that of the empty SWNTs due to its special tube internal structure. It was proved that the dominant reversible sites for lithium storage in empty SWNTs are the trigonal interstitial channels. Meanwhile, lithium can reversibly insert or extract the inner channels of the tubes after doping with ferrocene; the reversible capacity presented in the inner channels of Fc@SWNTs is about Li1.13C6.  相似文献   

7.
Soluble, ultra-short (length < 60 nm), carboxylated, single-walled carbon nanotubes (SWNTs) have been prepared by a scalable process. This process, predicated on oleum's (100% H2SO4 with excess SO3) ability to intercalate between individual SWNTs inside SWNT ropes, is a procedure that simultaneously cuts and functionalizes SWNTs using a mixture of sulfuric and nitric acids. The solubility of these ultra-short SWNTs (US-SWNTs) in organic solvents, superacid and water is about 2 wt %. The availability of soluble US-SWNTs could open opportunities for forming high performance composites, blends, and copolymers without inhibiting their processibility.  相似文献   

8.
Protein-assisted solubilization of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
We report a simple method that uses proteins to solubilize single-walled carbon nanotubes (SWNTs) in water. Characterization by a variety of complementary techniques including UV-Vis spectroscopy, Raman spectroscopy, and atomic force microscopy confirmed the dispersion at the individual nanotube level. A variety of proteins differing in size and structure were used to generate individual nanotube solutions by this noncovalent functionalization procedure. Protein-mediated solubilization of nanotubes in water may be important for biomedical applications. This method of solubilization may also find use in approaches for controlling the assembly of nanostructures, and the wide variety of functional groups present on the adsorbed proteins may be used as orthogonal reactive handles for the functionalization of carbon nanotubes.  相似文献   

9.
Discrete dispersion of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) have been effectively wetted and dispersed in saturated sodium hydroxide (NaOH) alcohol-water solutions with little surface damage or shortening of the tubes; the treated material was dissolvable as individual tubes in many common organic solvents.  相似文献   

10.
The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbon-based chain molecules, namely, polyynes (C(m)H(2), m = 4, 6, 10) and the dehydrogenated forms C(10)H and C(10), as well as hexane (C(6)H(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C(10)H(2), C(10)H, C(10), C(6)H(2), C(4)H(2), and C(6)H(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C(10)H inside an SWNT under an external field. Because C(10)H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.  相似文献   

11.
By using the spectral moments method, we calculate the infrared spectra of chiral and achiral single-walled carbon nanotubes (SWCNTs) of different diameters and lengths. We show that the number of the infrared modes, their frequencies, and intensities depend on the length and chirality of the nanotubes. Furthermore, the dependence of the infrared spectrum as a function of the size of the SWCNT bundle is analyzed. These predictions are useful to interpret the experimental infrared spectra of SWCNTs.  相似文献   

12.
How short can single-walled carbon nanotubes (SWNTs) be? How stable are such supershort SWNTs (ss-SWNTs)? This work is the first to address these questions. On the basis of binding energy (E(B)), standard heats of formation , and strain energy (E(S)), we found that SWNTs with only one benzene ring in the axial direction, which we refer to as supershort SWNTs (ss-SWNTs), can be thermodynamically stable. On the basis of the data of E(B), , and E(S), the relative stabilities of ss-SWNTs, fullerenes, polycyclic aromatic hydrocarbons, and butadiyne are discussed. This study has laid a theoretical foundation for the possible synthesis of ss-SWNTs.  相似文献   

13.
Single-walled carbon nanotubes (SWCNTs) are a family of structurally related artificial nanomaterials with unusual properties and many potential applications. Most SWCNTs can emit spectrally narrow near-IR fluorescence at wavelengths that are characteristic of their precise diameter and chiral angle. Near-IR fluorimetry therefore offers a powerful approach for identifying the structural species present in SWCNT samples. Such characterization is increasingly important for nanotube production, study, separation, and applications. General-purpose and specialized instruments suitable for SWCNT fluorimetric analysis are described, and methods for interpreting fluorimetric data to deduce the presence and relative abundances of different SWCNT species are presented. Fluorescence methods are highly effective for detecting SWCNTs in challenging samples such as complex environmental or biological specimens because of the methods’ high sensitivity and selectivity and the near absence of interfering background emission at near-IR wavelengths. Current limitations and future prospects for fluorimetric characterization of SWCNTs are discussed.  相似文献   

14.
200 nm-thick super bundles showing a novel polygonization and densely aligned arrangement are found in long single-walled carbon nanotube (SWNT) strands prepared by the vertical floating catalytic method.  相似文献   

15.
Atomically thin carbon nanotubes serve as transparent-test tubes for individual molecules of functionalised endohedral fullerenes. Aberration-corrected transmission electron microscopy reveals the complex dynamic behaviour of these molecules at the atomic level, and it sheds light on the mechanism of their encapsulation into nanotubes.  相似文献   

16.
Single-walled carbon nanotubes (SWNTs), being hydrophobic by nature, aggregate in water to form large bundles. However, isolated SWNTs possess unique physical and chemical properties that are desirable for sensing and biological applications. Conventionally isolated SWNTs can be obtained by wrapping the tubes with biopolymers or surfactants. The binding modes proposed for these solubilization schemes, however, are less than comprehensive. Here we characterize the efficacies of solubilizing SWNTs through various types of phospholipids and other amphiphilic surfactants. Specifically, we demonstrate that lysophospholipids, or single-chained phospholipids offer unprecedented solubility for SWNTs, while double-chained phospholipids are ineffective in rendering SWNTs soluble. Using transmission electron microscopy (TEM) we show that lysophospholipids wrap SWNTs as striations whose size and regularity are affected by the polarity of the lysophospholipids. We further show that wrapping is only observed when SWNTs are in the lipid phase and not the vacuum phase, suggesting that the environment has a pertinent role in the binding process. Our findings shed light on the debate over the binding mechanism of amphiphilic polymers and cylindrical nanostructures and have implications on the design of novel supramolecular complexes and nanodevices.  相似文献   

17.
Methods of insertion of azafullerenes in single-walled carbon nanotubes (SWNTs) at different temperatures were investigated, while the effects of the conditions applied on the structure of azafullerene-based peapods, namely, C59N@SWNTs, were explored. Morphological characteristics of C59N@SWNTs were assessed and evaluated by means of high-resolution transmission electron microscopy (HR-TEM). Pathways and chemical reactions that occur upon encapsulation of C59N within SWNTs were evaluated. Monomeric azafullerenyl radical C59N. as inserted into SWNTs at high temperature, from purified (C59N)2 in the gas phase, can undergo a variety of different transformations forming dimers, oligomers or existing in its monomeric form inside SWNTs due to the stabilization effect by nanotube side walls. However, under milder conditions, that is, at lower temperature, bisazafullerene (C59N)2 can be inserted into SWNTs in its pristine dimeric form.  相似文献   

18.
The detection of nanotube carbons in solution by (13)C NMR is reported. The highly soluble sample was from the functionalization of (13)C-enriched single-walled carbon nanotubes (SWNTs) with diamine-terminated oligomeric poly(ethylene glycol) (PEG(1500N)). The ferromagnetic impurities due to the residual metal catalysts were removed from the sample via repeated magnetic separation. The nanotube carbon signals are broad but partially resolved into two overlapping peaks, which are tentatively assigned to nanotube carbons on semiconducting (upfield) and metallic (downfield) SWNTs. The solid-state NMR signals of the same sample are similarly resolved. Mechanistic and practical implications of the results are discussed.  相似文献   

19.
20.
The third-order susceptibility of tetrachloroethane dispersions of capped single-wall carbon nanotubes (SWCNT) has been analyzed by the z-scan technique using a femtosecond laser, and the SWCNT image obtained by atomic force microscopy has been also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号