共查询到18条相似文献,搜索用时 93 毫秒
1.
为解决在强背景噪声条件下滚动轴承故障诊断问题,开展基于能量特征和小波降噪的总体经验模态分解(EEMD)研究。首先以仿真信号为研究对象,对其进行总体经验模态分解,得到9个固有模态函数(IMF)和1个余项( Res),然后考虑各模态函数的能量特征,将分解后的9个IMF分量与原始信号的能量比作为判断标准,剔除附加5个低频分量,最终得到4个有效的IMF分量和1个余项,与仿真信号相符。在仿真信号分析的基础上,对含噪声信号的滚动轴承故障信号进行故障诊断试验研究,采集信号经小波降噪后,利用总体平均经验模态分解并结合能量特征,得到3个IMF分量和1个余项,然后对3个IMF分量进行包络谱分析,提取故障特征频率157.5 Hz,与滚动轴承故障内圈特征频率157.9 Hz相比,误差为0.25%,说明该方法能很好地提取含有噪声信号的轴承故障信息。该研究为强背景噪声下滚动轴承故障信息的提取提供了一种有效的方法。 相似文献
2.
《河南科技大学学报(自然科学版)》2014,(5)
小波包分解可以提高信号频率分辨率,但子带信号会出现虚假频率成分,造成严重的频率混叠现象。运用小波包的改进算法和经验模态分解相结合,来检测诊断滚动轴承故障的特征。首先,应用快速傅里叶变换和快速傅里叶逆变换对小波包各子带信号进行处理,并调整滤波器组使子带频带顺序排列。提取含故障频率的子带信号对其进行经验模态分解,以互相关、峭度准则提取故障本征模函数分量,可以避免本征模函数分量选择的盲目性。对仿真信号分析和实例分析的结果表明:该方法能够准确地检测出轴承故障,从而突出该方法的有效性。 相似文献
3.
为了检测内燃机气阀漏气的气密性故障,利用小波包分解改进算法,通过对柴油机完整工作循环内的缸盖振动信号进行小波包分解,从小波包分解系数中提取柴油机振动诊断的整循环征兆.由整循环特征向量图表明,正常状态时柴油机气缸盖振动信号中低频部分能量相对较大,高频部分能量相对较小;漏气状况时振动信号中的低频部分能量减小,而高频部分能量增加,由此实现了故障的识别.这说明基于小波包分解的整循环征兆提取与故障识别方法有效、可行. 相似文献
4.
提出了一种基于离散小波变换(DWT)和小波包分解(WPD)的语音增强算法.该算法首先将带噪语音进行离散小波变换,并分别对离散逼近信号和离散细节信号采用不同的基小波进行小波包分解,再按照不同的规则选取阈值进行去噪,最后对去噪后的语音信号完成重构.计算机仿真表明,在计算量相当的情况下,该算法优于离散小波变换法去噪和小波包分解法去噪. 相似文献
5.
针对多媒体产品的产权保护问题,利用数字图像为研究对象,采用小波包和人类视觉特性相结合的方法分析研究数字图像水印的生成、嵌入与提取过程,并通过实验对算法嵌入的水印进行攻击,结果表明:本文算法具有很大的嵌入容量,同时具有很好的鲁棒性和适应性。 相似文献
6.
针对发动机失火故障信息难以提取的问题, 提出了一种基于集合经验模态分解(EEMD: Ensemble Empirical Mode Decomposition)的发动机失火故障检测方法。该方法能自适应地将曲轴转速信号分解为若干个本征模态函数(IMF: Intrinsic Mode Function), 确定包含故障信息的IMF, 通过该IMF 幅值的异常波动, 可以较准确地判断发动机发生失火故障的时间。并通过AMESim 建立了发动机仿真模型, 从中采集了3 种情况的曲轴转速信号, 分别利用EEMD 分解并最终检测失火故障。实验结果表明, 该方法能有效提取故障信息, 实现失火故障的离线检测, 并可以作为在线检测的基础。 相似文献
7.
8.
郭欣欣 《重庆工商大学学报(自然科学版)》2016,33(2):21-25
从降低电价序列非平稳性出发,提出一种基于聚类经验模态分解(EEMD)和小波神经网络(WNN)的新型组合预测模型来预测短期电价;采用Matlab/Simulink仿真平台进行建模仿真;仿真结果表明:新算法预测精度高,预测方法可行。 相似文献
9.
对音频编码中基于自适应小波包分解在前人基础上作了进一步的探讨,对最优小波包的选择进行了优化,根据应兼顾实时计算复杂度和音频信号能量集中在低频的特点,提出一改进的自适应小波包分解算法,并采用基于心理声学模型的零树编码,使该系统对语音信号有较高的压缩比,同时能保持良好的实时性和客观恢复信噪比. 相似文献
10.
利用Shannon熵准则选取最优小波包基,分别对原始图像和水印图像进行小波包分解,把水印数据嵌入选定的原始图像小波包基中.实验结果表明,该算法水印信息嵌入量大,不可感知性好,对JPEG压缩有较好的鲁棒性. 相似文献
11.
针对齿轮早期故障特征的微弱性和耦合性,本文提出广义变分模式分解(generalized variational mode decomposition, GVMD)-峭度-包络谱法诊断齿轮故障。首先利用GVMD的频域多尺度定频分解属性,根据齿轮故障频谱信息和信号特点设置GVMD主要参数,按需分解信号,准确获取微弱特征分量,避免VMD对微弱特征提取存在的不足和小波包变换能量泄漏引起的微弱特征混淆问题。然后结合峭度准则和齿轮故障频率信息选择故障冲击分量,融合更多故障信息重构降噪信号。最后对降噪信号进行包络解调分析,实现齿轮故障诊断。实际信号分析表明,由于GVMD能够按需获取微弱特征分量,本文所提方法能够获得更丰富的微弱故障信息准确识别齿轮早期故障位置。 相似文献
12.
针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断. 相似文献
13.
基于特征评估和神经网络的机械故障诊断模型 总被引:15,自引:0,他引:15
为了克服在无先验知识的情况下,人为选择时域无量纲指标作为故障敏感特征的盲目性,提出了一种基于特征评估和径向基函数(RBF)神经网络的机械故障诊断模型.该模型分别采用小波包和经验模式分解方法对原始振动信号进行分解,分别提取原始信号和各分解信号的时域无量纲指标组成联合特征,然后对联合特征进行评估,计算评估因子,并根据评估因子的大小选取敏感特征作为RBF神经网络的输入,实现对机器不同状态的自动识别.实验结果和工程应用表明,这种集成了小波包、经验模式分解、特征评估方法和RBF神经网络的机械故障诊断模型能够精细地获取故障信息,从大量的故障特征中筛选出敏感特征,因而减小了网络规模,提高了分类准确率,具有很强的鲁棒性. 相似文献
14.
针对柴油机缸套磨损故障诊断问题,在实车上测试了柴油机机体振动信号,应用经验模态分解(EMD)对不同磨损状态下的柴油机机体振动信号进行了分析,然而,EMD存在的模态混叠问题使其难以获得准确的基本模式分量(IMF).为此引入基于总体经验模态分解(EEMD)的改进的局域波分析方法,利用EEMD获取无模式混淆的IMF,通过Hilbert边际谱分析信号能量随瞬时频率的变化特征.工程实测分析结果验证了应用该方法进行柴油机缸套磨损故障诊断的有效性. 相似文献
15.
鲍志鹏 《上海应用技术学院学报:自然科学版》2014,14(4):314-318
利用小波去噪阈值法对齿轮箱故障振动信号进行去噪,将经验模态分解(EMD)和快速傅里叶变换(FFT)相结合对齿轮箱故障进行特征提取,此方法适合于对非线性非稳态信号进行自适应的分析.利用小波阈值去噪方法对原始信号进行预处理,将去噪后的信号进行经验模态分解,得到一定数量的本征模态函数(IMF)分量,选取特定的IMF进行FFT,得到相应的功率谱,从而达到提取齿轮箱故障特征频率的目的.对齿轮箱故障信号进行分析,结果表明该方法能够有效地识别出齿轮箱故障特征频率. 相似文献
16.
语音去噪技术是语音识别系统走向实用化的一个关键性难题.针对语音信号为非平稳信号的特点,提出了一种基于EEMD和ICA相结合的语音去噪方法,首先利用集合经验模态分解(EEMD)算法将含噪语音信号分解为若干个独立的固有模态函数(IMF),消除了经验模态分解(EMD)算法处理语音信号时产生的模态混迭现象;然后将固有模态函数通过改进的独立分量分析(ICA)算法分离出若干个有效的语音信号分量;最后对其进行语音重构,从而达到消除噪声干扰的目的.实验结果表明,该方法在输入信噪比为-10dB的汽车噪声条件下,可以将语音信号的信噪比提高到2.741 2 dB. 相似文献
17.
为使在线手写签名认证的使用更具实用性,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的在线手写签名特征提取方法.针对在线签名数据的坐标信息,以EMD分解所得的本征模态函数(IMF)分量为初始矩阵,并进行矩阵奇异值分解,以奇异值的能量值作为样本数据的特征分量构成用户特征向量,建立了基于支持向量数据描述(SVDD)的一类认证模型验证该方法效果.在SVC2004签名数据库上的实验结果表明:该方法提取的签名特征区分明显,使用少量的单类真实签名作为训练样本,得到FAR=3.38%,取得了较好的认证识别效果. 相似文献
18.
从检测信号中提取出发动机转子早期故障特征并进行快速识别是故障诊断的一个难点。将小波包分析与能量监测相结合,提出了根据频带能量对早期故障进行特征提取和识别方法。对频带能量分析原理,早期故障特征提取与识别方法进行了分析和研究,并将其应用于飞机发动机转子的早期故障识别。结果表明,频带能量分析方法能够有效地提取发动机转子早期故障特征并进行快速识别,特别是对于非平稳微弱早期故障信号,更具有明显优势。 相似文献