首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recombination energies resulting from electron capture by a positive ion can be accurately measured using hydrated ion nanocalorimetry in which the internal energy deposition is obtained from the number of water molecules lost from the reduced cluster. The width of the product ion distribution in these experiments is predominantly attributable to the distribution of energy that partitions into the translational and rotational modes of the water molecules that are lost. These results are consistent with a singular value for the recombination energy. For large clusters, the width of the energy distribution is consistent with rapid energy partitioning into internal vibrational modes. For some smaller clusters with high recombination energies, the measured product ion distribution is narrower than that calculated with a statistical model. These results indicate that initial water molecule loss occurs on the time scale of, or faster than energy randomization. This could be due to inherently slow internal conversion or it could be due to a multi-step process, such as initial ion-electron pair formation followed by reduction of the ion in the cluster. These results provide additional evidence for the accuracy with which condensed phase thermochemical values can be deduced from gaseous nanocalorimetry experiments.  相似文献   

2.
Hydrated divalent magnesium and calcium clusters are used as nanocalorimeters to measure the internal energy deposited into size-selected clusters upon capture of a thermally generated electron. The infrared radiation emitted from the cell and vacuum chamber surfaces as well as from the heated cathode results in some activation of these clusters, but this activation is minimal. No measurable excitation due to inelastic collisions occurs with the low-energy electrons used under these conditions. Two different dissociation pathways are observed for the divalent clusters that capture an electron: loss of water molecules (Pathway I) and loss of an H atom and water molecules (Pathway II). For Ca(H(2)O)(n)(2+), Pathway I occurs exclusively for n >or= 30 whereas Pathway II occurs exclusively for n 相似文献   

3.
The measured minimum resonance excitation amplitudes for decomposition of polyatomic ions in the quadrupole ion trap collisional activation experiment are shown to correlate with literature critical energies. The present article describes how experiments can be performed to derive threshold resonance excitation amplitudes via the kinetics associated with collision-induced dissociation (i.e., dissociation rate constants) in the quadrupole ion trap. The relationship between these threshold values and critical energies is established empirically by using kinetic data acquired for molecular ions with critical energies measured with other techniques. The experiments are complicated by the change in optimum resonance excitation frequency with amplitude, due presumably to contributions from higher order fields. It is proposed that the threshold resonance excitation amplitude is a measure of the change in temperature of the parent ion population required to achieve a measurable rate of decomposition. The present results indicate that the quadrupole ion trap may see new applications as a quantitative tool for the study of gaseous ion chemistry.  相似文献   

4.
Ion nanocalorimetry is used to investigate the internal energy deposited into M (2+)(H 2O) n , M = Mg ( n = 3-11) and Ca ( n = 3-33), upon 100 keV collisions with a Cs or Ne atom target gas. Dissociation occurs by loss of water molecules from the precursor (charge retention) or by capture of an electron to form a reduced precursor (charge reduction) that can dissociate either by loss of a H atom accompanied by water molecule loss or by exclusively loss of water molecules. Formation of bare CaOH (+) and Ca (+) by these two respective dissociation pathways occurs for clusters with n up to 33 and 17, respectively. From the threshold dissociation energies for the loss of water molecules from the reduced clusters, obtained from binding energies calculated using a discrete implementation of the Thomson liquid drop model and from quantum chemistry, estimates of the internal energy deposition can be obtained. These values can be used to establish a lower limit to the maximum and average energy deposition. Not taking into account effects of a kinetic shift, over 16 eV can be deposited into Ca (2+)(H 2O) 33, the minimum energy necessary to form bare CaOH (+) from the reduced precursor. The electron capture efficiency is at least a factor of 40 greater for collisions of Ca (2+)(H 2O) 9 with Cs than with Ne, reflecting the lower ionization energy of Cs (3.9 eV) compared to Ne (21.6 eV). The branching ratio of the two electron capture dissociation pathways differs significantly for these two target gases, but the distributions of water molecules lost from the reduced precursors are similar. These results suggest that the ionization energy of the target gas has a large effect on the electron capture efficiency, but relatively little effect on the internal energy deposited into the ion. However, the different branching ratios suggest that different electronic excited states may be accessed in the reduced precursor upon collisions with these two different target gases.  相似文献   

5.
Ion nanocalorimetry is used to measure the effects of electron kinetic energy in electron capture dissociation (ECD). With ion nanocalorimetry, the internal energy deposited into a hydrated cluster upon activation can be determined from the number of water molecules that evaporate. Varying the heated cathode potential from -1.3 to -2.0 V during ECD has no effect on the average number of water molecules lost from the reduced clusters of either [Ca(H2O)15]2+ or [Ca(H2O)32]2+, even when these data are extrapolated to a cathode potential of zero volts. These results indicate that the initial electron kinetic energy does not go into internal energy in these ions upon ECD. No effects of ion heating from inelastic ion-electron collisions are observed for electron irradiation times up to 200 ms, although some heating occurs for [Ca(H2O)17]2+ at longer irradiation times. In contrast, this effect is negligible for [Ca(H2O)32]2+, a cluster size typically used in nanocalorimetry experiments, indicating that energy transfer from inelastic ion-electron collisions is negligible compared with effects of radiative absorption and emission for these larger clusters. These results have significance toward establishing the accuracy with which electrochemical redox potentials, measured on an absolute basis in the gas phase using ion nanocalorimetry, can be related to relative potentials measured in solution.  相似文献   

6.
7.
Protonated leucine enkephalin has been used as a prototypical high-mass ion to yield a quantitative estimate of the relationship between the amplitude of the resonance excitation voltage used in an ion trap collisional activation experiment, and the internal temperature to which an ion can be elevated over the bath gas temperature. The approach involves the measurement of the ion dissociation rate as a function of resonance excitation voltage, and the correlation of dissociation rate with ion internal temperature. The relatively high ion trap dissociation rates observed under typical resonance excitation conditions preclude the direct application of the Arrhenius equation to derive internal temperatures. An empirical determination of the relationship between ion internal temperature and dissociation rate over the rate range of interest here was made via the systematic variation of bath gas temperature. The data suggest a very nearly linear relationship between ion internal temperature and resonance excitation voltage, at least under conditions in which ion ejection is minimal. It is shown that protonated leucine enkephalin ions can be elevated by about 357 K over the bath gas temperature using a monopolar resonance excitation voltage of 540 mV pp(qz = 0.163) without significant ion ejection. It is also demonstrated that ion internal temperature can be readily increased by increasing the bath gas temperature, by accelerating the ions in the presence of a room temperature bath gas (i.e. conventional ion trap collisional activation), or by a combination of the two approaches.  相似文献   

8.
A low‐energy collision induced dissociation (CID) (low‐energy CID) approach that can determine both activation energy and activation entropy has been used to evaluate gas‐phase binding energies of host‐guest (H‐G) complexes of a heteroditopic hemicryptophane cage host (Zn (II)@1) with a series of biologically relevant guests. In order to use this approach, preliminary calibration of the effective temperature of ions undergoing resonance excitation is required. This was accomplished by employing blackbody infrared radiative dissociation (BIRD) which allows direct measurement of activation parameters. Activation energies and pre‐exponential factors were evaluated for more than 10 H‐G complexes via the use of low‐energy CID. The relatively long residence time of the ions inside the linear ion trap (maximum of 60 s) allowed the study of dissociations with rates below 1 s?1. This possibility, along with the large size of the investigated ions, ensures the fulfilment of rapid energy exchange (REX) conditions and, as a consequence, accurate application of the Arrhenius equation. Compared with the BIRD technique, low‐energy CID allows access to higher effective temperatures, thereby permitting one to probe more endothermic decomposition pathways. Based on the measured activation parameters, guests bearing a phosphate (―OPO32?) functional group were found to bind more strongly with the encapsulating cage than those having a sulfonate (―SO3?) group; however, the latter ones make stronger bonds than those with a carboxylate (―CO2?) group. In addition, it was observed that the presence of trimethylammonium (―N(CH3)3+) or phenyl groups in the guest's structure improves the strength of H‐G interactions. The use of this technique is very straightforward, and it does not require any instrumental modifications. Thus, it can be applied to other H‐G chemistry studies where comparison of bond dissociation energies is of paramount importance.  相似文献   

9.
The effects of storing ions at different values of the stability parameters az and qzwere studied in a quadrupole ion trap, using helium or argon as buffer. A region was localized near the boundaries of the stability diagram in which the ions experience an increase in their kinetic energy. This is reflected in the occurrence both of fragmentation due to collisional activation and of a certain extent of ion loss due to unstable trajectories. The results of this excitation, referred to as ‘boundary effects,’ depend on the specific qzat which the ion storage is performed and on the buffer gas used, and point to a simpler means of obtaining tandem mass spectra with the ion trap without the need to apply resonant tickle voltages between the end -cap electrodes.  相似文献   

10.
The effectiveness of two activation techniques, collision activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD), is compared for structural characterization of protonated and lithium-cationized macrolides and a series of synthetic precursors in a quadrupole ion trap (QIT). Generally, cleavage of the glycosidic linkages attaching the sugars to the macrolide ring and water losses constitute the major fragmentation pathways for most of the protonated compounds. In the IRMPD spectra, a diagnostic fragment ion assigned as the desosamine ion is a dominant ion that is not observed in the CAD spectra because of the higher m/z limit of the storage range required during collisional activation. Activation of the lithium-cationized species results in new diagnostic fragmentation pathways that are particularly useful for confirming the identities of the protecting groups in the synthetic precursors. Multi-step IRMPD allows mapping of the fragmentation genealogies in greater detail and supports the proposed structures of the fragment ions.  相似文献   

11.
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra, whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude. The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD.  相似文献   

12.
A collisional induced dissociation study of 1,3,5-trinitro-1,3,5 triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was carried out using mass analyzed kinetic energy spectrometry. High resolution mass spectra and mass analyzed ion kinetic energy/collisional induced dissociation spectra of RDX and HMX were recorded in the electron impact, chemical ionization and negative ion chemical ionization modes. Fragmentation pathways of the compounds investigated were determined in all three modes of ionization. It was found that a major part of the fragment ions in RDX and HMX originate from formation of the aduct ions [M+NO]+ and [M+NO2]+ in electron impact and chemical ionization, and from [M+NO]? and [M+NO2]? in negative chemical ionization, followed by dissociation.  相似文献   

13.
The activation energy for the unimolecular dissociation of a non-covalent supramolecular complex between an Artificial Cationic Receptor A ([Gua-Val-Val-Val-Amide]+, in which Gua is guanidiniocarbonyl pyrrole) and an Anionic Tetrapeptide B ([N-Acetyl-Val-Val-Ile-Ala]-) has been determined by measurement of the dissociation rate constant as a function of infrared CO2 laser power density. Singly-charged quasimolecular [A + B + H]+ ions are isolated, stored in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer, and irradiated by IR photons. The rate constant for dissociation of the non-covalent complex is determined at five different laser power densities. A plot of the natural logarithm of the first-order rate constant versus the natural logarithm of the laser power density yields a straight line, the slope of which provides an approximate measure of the activation energy (Ea(laser)) for dissociation. Ea(laser) is calculated by a relationship derived earlier by Dunbar and with a newly proposed equation by Paech et al. The results of the two approaches deliver significantly different activation energy values for the unimolecular dissociation of the non-covalent complex. We obtain EaI(laser) = 0.67 eV (Dunbar approximation) and EaII(laser) = 1.12 eV (Paech et al. approximation). Differences between the two approaches are discussed with respect to non-covalent complexes.  相似文献   

14.
The apparent activation energy,Eapp,is a common measure in thermal catalysis to discuss the activity and limiting steps of catalytic processes on solid-state materials.Recently,the electrocatalysis community adopted the concept of Eapp and combined it with the Butler-Volmer theory.Certain observations though,such as potential-dependent fluctuations of Eapp,are yet surprising because they conflict with the proposed linear decrease in Eapp with increasin...  相似文献   

15.
An evaluation of the extended kinetic method with full entropy analysis was conducted using RRKM theory to simulate data for collision-induced dissociation under single-collision conditions. A rigorous method for analyzing kinetic method data, orthogonal distance regression, is introduced and compared with previous methods in the literature. The results demonstrate that the use of the extended kinetic method is definitely superior to the standard kinetic method, but final ion affinities and activation entropies differ intrinsically from the correct values. Considering the effects of both systematic and random error in Monte Carlo simulations of the full entropy analysis, error distributions of +/-4 to +/-12 kJ mol(-1) for ion affinities and of +/-9 to +/-30 J mol(-1) K(-1) for activation entropy differences are found (+/-2 standard deviations of the sample populations). The systematic errors in ion affinities are larger for systems with large activation entropy differences. These uncertainties do not include any error in the absolute calibration of the reference ion affinity scale. We argue that application of an empirical correction factor is inadvisable.  相似文献   

16.
The temperature dependence of thermodynamic quantities, such as heat capacity, entropy and free enthalpy, may be obtained by using well-known equations that relate these quantities to the enthalpy of the molecular system of interest at a range of temperatures. In turn, the enthalpy of a molecular system can be estimated from molecular dynamics simulations of an appropriate model. To demonstrate this, we have investigated the temperature dependence of the enthalpy, heat capacity, entropy and free enthalpy of a system that consists of a beta-heptapeptide in methanol and have used the statistical mechanics relationships to describe the thermodynamics of the folding/unfolding equilibrium of the peptide. The results illustrate the power of current molecular simulation force fields and techniques in establishing the link between thermodynamic quantities and conformational distributions.  相似文献   

17.
18.
Quasiclassical trajectories for He + H2 were carried out using the recent ab initio potential of Boothroyd, Martin, and Peterson (J. Chem. Phys. 2003, 119, 3187) and results for the 348 (v, j) states of H2 are compared to those of earlier calculations that used the potential of Wilson, Kapral, and Burns (Chem. Phys. Lett. 1974, 24, 4884). Examined are the cross sections for energy transfer and dissociation, the extent of threshold elevation, and the interconversion of vibrational and rotational energy. Implications for modeling the interstellar medium are discussed.  相似文献   

19.
Two methods for the identification of aminophospholipid stereomers are described. After a chemical derivatization, 9-fluorenylmethoxycarbonyl derivatives of diacyl-sn-2- and diacyl-sn-3-phosphoserine and diacyl-sn-2- and diacyl-sn-3-phosphoethanolamine can be characterized by positive-ion fast atom bombardment combined with collisional activation mass-analysed ion kinetic energy analysis based on the differentiation of relative abundances [M + H + diethanolamine ? 89]+ and [M + H]+ fragments derived from [M + H + diethanolamine]+ ions, the protonated solvated molecules, and normal phase high-performance liquid chromatography on the basis of different elution times of the derivatives of the aminophospholipid stereomers on an aminopropyl-bonded column.  相似文献   

20.
An ion beam instrument has been constructed that utilizes a unique, simple ion deceleration lens. We demonstrate here that the kinetic energies of the ions formed can be determined accurately and precisely over a range of energies, that endothermic processes can be characterized, and that the instrument exhibits high product ion collection efficiencies. Results of collision-induced dissociation studies of the TiCln+ ions (n = 1–4), generated by 70 eV electron impact ionization, are presented here. The results are compared with those obtained from threshold measurements, and indicate that these ions are formed with substantial average internal energies. This information is useful, since the rich gas phase chemistry of TiCln+ ions with organic molecules reported to date involves reactant ions that have not been thermalized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号