首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Applying a low‐Mach asymptotic for the compressible Navier–Stokes equations, we derive a new fluid dynamics model,which should be capable to model large temperature differences in combination with the low‐Mach number limit. The model is used to simulate fires in vehicle tunnels, where the standard Boussinesq‐approximation for the incompressible Navier–Stokes seems to be inappropriate due to the high temperatures developing in the tunnel. The model is implemented using a modified finite‐difference approach for the incompressible Navier–Stokes equations and tested in some realistic fire events. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A non-linear, in-plane computer simulation model of a typical high-mobility tracked vehicle is developed for suspension dynamic analysis and ride quality assessment. The Langrangian model formulation of the tracked vehicle is derived considering an arbitrary rigid terrain profile and constant vehicle speed. The model incorporates detailed representations of a trailing arm suspension system and dynamic wheel-track-terrain interactions. The computer model predictions are validated against field measurements, which were gathered from tests of an armoured personnel carrier traversing a discrete half-round bump and a random course. A parametric sensitivity analysis was carried out using the validated computer model in order to assess the influence of conventional suspension parameters on the ride performance of the test vehicle. In addition, the ride performance potentials of an alternate hydrogas suspension configuration were investigated.  相似文献   

3.
This paper presents the fuzzy logic expert system (FLES) for an intelligent air-cushion tracked vehicle performance investigation operating on swamp peat terrain. Compared with traditional logic model, fuzzy logic is more efficient in linking the multiple units to a single output and is invaluable supplements to classical hard computing techniques. Therefore, the main purpose of this study is to investigate the relationship between vehicle working parameters and performance characteristics, and to evaluate how fuzzy logic expert system plays an important role in prediction of vehicle performance. Experimental values are taken in the swamp peat terrain for vehicle performance investigation. In this paper, a fuzzy logic expert system model, based on Mamdani approach, is developed to predict the tractive efficiency and power consumption. Verification of the developed fuzzy logic model is carried out through various numerical error criteria. For all parameters, the relative error of predicted values are found to be less than the acceptable limits (10%) and goodness of fit of the predicted values are found to be close to 1.0 as expected and hence shows the good performance of the developed system.  相似文献   

4.
Soil surface forces resulting from traffic tracked vehicles can cause environmental damage by decreasing plant development and increasing erosion. This paper investigates the soil surface disturbance from tracked vehicle operation. Sharp turns (lower turning radius) from M113 operation produce increased disturbed widths and more severe vegetation damage. The pad-load ratio for the M113 track shoe was determined at various loads. The soil rut produced from tracked vehicle operation was determined at various driving models (straight, smooth turn, sharp turn). The width and depth of track rut and height of soil piled increased when the tracked vehicle negotiated a sharp turn. The results of this study indicate for the soil conditions tested, the width of disturbance is dependent on the operating characteristics of the vehicle. A vehicle conducting sharp turns will disturb a larger width of soil than a vehicle travelling straight or conducting smooth turns.  相似文献   

5.
Design and mobility evaluation of tracked lunar vehicle   总被引:2,自引:0,他引:2  
Past lunar vehicles have had difficulty traveling through soft sand areas due to the thick, soft and dry regolith. This paper describes the design and evaluation results of a tracked lunar vehicle which aims at achieving greater mobility, particularly improved climbing ability on pure sand slopes, by reducing contact pressure with a crawler link. The tracked vehicle uses mesh crawler links to reduce complexity, weight and parts count. Single-crawler tests on simulated lunar soil revealed that the crawler’s slip ratio was lower than that of a rigid wheel at any slope angle, and that its power consumption was lower than that of a wheel on slopes of 10° or more. Furthermore, the crawler’s slip ratio was stable or decreasing along the traveling distance on steep slopes, contrary to the wheel. Our tracked lunar vehicle, the “Light Crawler”, is equipped with four such mesh-crawlers, each of which is independently driven and steered. It is intended to realize high climbing ability, a small turning circle, and an obstacle-crossing capability using a unique suspension system. The vehicle’s climbing and obstacle-crossing capabilities were tested on both simulated lunar soil and a rock-scattered field, and its mobility performance was successfully confirmed.  相似文献   

6.
Semi-active hydro-gas suspension system for a tracked vehicle   总被引:1,自引:0,他引:1  
A semi-active hydro-gas suspension is proposed for a tracked vehicle to improve ride comfort performance, without compromising the road holding and load carrying capabilities of the passive suspension. This is achieved through an active damper used in parallel with a gas spring. The suspension damper parameters are varied by a control mechanism based on sky-hook damping theory, which alters the flow characteristics. A damper prototype has been developed, tested for its flow characteristics, after which it has been integrated into an existing hydro-gas suspension system. An analytical model has been proposed from first principles rather than developing a phenomenological model based on experimental characteristics. This model is validated with experiments carried out on a suspension test rig. In order to compare the performance with the original passive system, an in-plane vehicle model is developed and the simulations clearly show that the semi-active system performance is superior to the passive system.  相似文献   

7.
Longitudinal dynamics of a tracked vehicle: Simulation and experiment   总被引:1,自引:0,他引:1  
In recent years virtual dynamic system simulation has become very important in the design and development stage, as new strategies can be examined without expensive measurements and with reduced time. This paper describes the development of a simulation model for transient analysis of the longitudinal dynamics of a heavy tracked vehicle. The driving inputs for this simulation model are obtained from a powertrain model. The main elements of the powertrain include the engine, Torque Converter (TC), transmission and drivetrain. Here the engine is modeled based on the engine maps from steady-state experiments. The TC is modeled based on its characteristic map from experiments. A fairly simple transmission model is used which is based on static gear ratios assuming small shift times. The final drivetrain model however includes the rotational dynamics of the sprocket. The simulation model developed is validated by comparing the predicted values with the measured data from experiments. The results have demonstrated that the developed model is able to predict fairly accurately the acceleration and braking performance of the heavy tracked vehicle on both soft and hard terrain.  相似文献   

8.
9.
In recent years, water disasters have increased in Japan. In water disaster, remote controlled vehicles which work for disaster recovery must run in water environment. Since underwater ground is likely to be soft, the vehicle has a risk of stuck. If a vehicle gets stuck at disaster sites, rescue work is difficult because it is not easily to access to that area. We must make a method for judging whether to run or not. For this purpose, we must quantitatively clarify the relationship between the trafficability and the strength, bearing capacity, etc. of underwater ground. We measured the cone index of underwater ground. From results, we confirmed that fragile layer was formed on the surface layer in underwater ground. We measured drawbar pull of a tracked carrier in test field. As a result, maximum drawbar pull of underwater ground was lower than on the ground. After slip occurs, drawbar pull of underwater ground was smaller than ground significantly.  相似文献   

10.
On the numerical solution of tracked vehicle dynamic equations   总被引:1,自引:0,他引:1  
In this investigation, the solution of the nonlinear dynamic equations of the multibody tracked vehicle systems are obtained using different procedures. In the first technique, which is based on the augmented formulation that employes the absolute Cartesian coordinates and Lagrange multipliers, the generalized coordinate partitioning of the constraint Jacobian matrix is used to determine the independent coordinates and the associated independent differential equations. An iterative Newton-Raphson algorithm is used to solve the nonlinear constraint equations for the dependent variables. The numerical problems encountered when one set of independent coordinates is used during the simulation of large scale tracked vehicle systems are demonstrated and their relationship to the track dynamics is discussed. The second approach employed in this investigation is the velocity transformation technique. One of the versions of this technique is discussed in this paper and the numerical problems that arise from the use of inconsistent system of kinematic equations are reported. In the velocity transformation technique, the tracked vehicle system is assumed to consist of two kinematically decoupled subsystems; the first subsystem consists of the chassis, the rollers, the sprocket and the idler, while the second subsystem consists of the track which is represented as a closed kinematic chain that consists of rigid links connected by revolute joints. It is demonstrated that the use of one set of recursive equations leads to numerical difficulties because of the change in the track configuration. Singular configurations can be avoided by repeated changes in the recursive equations. The sensitivity of the predictor-corrector multistep numerical integration schemes to the method of formulating the state equations is demonstrated. The numerical results presented in this investigation are obtained using a planner tracked vehicle model that consists of fifty four rigid bodies.  相似文献   

11.
In this study, we describe a mathematical model designed to allow for the determination of the mechanical relationship existing between soil characteristics and the primary design factors of a tracked vehicle, and to predict the tractive performance of this tracked vehicle on soft terrain. On the basis of the mathematical model, a computer simulation program (Tractive Performance Prediction Model for Tracked Vehicles; TPPMTV) was developed in this study. This model took into account the characteristics of the terrain, including the pressure-sinkage, the shearing characteristics, and the response to the repetitive loading, as well as the primary design parameters of the tracked vehicle. The efficacy of the developed model was then confirmed via comparison of the drawbar pulls of tracked vehicles predicted using the simulation program TPPMTV, with those determined as the result of traction tests. The results indicated that the predicted drawbar pulls, with the change in slip, were quite consistent with the ones measured in the traction test, for the changes in the weight of the vehicle, the initial track tension, and the number of roadwheels within the entire slip range. Thus, we concluded that the simulation program developed in this study, named TPPMTV, proved useful in the prediction of the tractive performance of a tracked vehicle, and that this system might be applicable to the design of a vehicle, possibly enabling a significant improvement in its functions.  相似文献   

12.
13.
This paper deals with soil thrust exerted by a tracked vehicle. Measurements of the ground pressure beneath the tracks of a tracked vehicle were carried out and it was shown that the ground pressure distribution is approximately represented by discontinuous triangles which have their maxima under the roadwheels. The relationship between soil shear curve (shear stress or force-deformation curve) obtained from shear test and thrust curve (soil thrust-slip ratio curve) of the tracked vehicle is analyzed by using the above mentioned ground pressure distribution, and it is shown that there is a transformation law between both curves. Namely, the thrust curve due to soil shear under any wheel portion is given as a function of soil and vehicle parameters. Further, the reliability of the above method is confirmed experimentally.  相似文献   

14.
This study presents a developed hybrid electrical air-cushion tracked vehicle (HETAV) for the transportation operation of agricultural and industrial goods on the swamp peat terrain bearing capacity of 5 kN/m2. The vehicle’s design parameters are optimized by using the developed mathematical models which are made based on the kinematics and dynamics behaviors of the vehicle. A set of sensors are used with this vehicle to activate the air-cushion system and battery pack recharging system. The vehicle’s air-cushion system is protected by a novel-design auto-adjusting supporting system. The air-cushion dragging motion resistance is overcome with additional thrust which is developed by a propeller. The vehicle is equipped with the air-cushion system to make the vehicle ground contact pressure 5 kN/m2.  相似文献   

15.
Tracked vehicles fitted with torsion bar suspensions are limited in their ability to achieve high mobility. This limitation is due to the linear characteristics and the consequent poorer ride performance. Hydro-gas suspensions due to their inherent non-linear behavior can provide higher mobility and better ride comfort performance. The hydro-gas suspension model has usually been developed from experimental force-displacement characteristics, which requires availability of suspension hardware.In this paper, a hydro-gas suspension system is modeled using polytropic gas compression model to represent the spring characteristics, while the damper orifices are modeled using hydraulic conductance. The analytical model is then validated with experiments individually for spring and damper flow characteristics and then as a suspension-wheel assembly in a test rig. The validated suspension model is incorporated in an in-plane model. Using this model, simulation is carried out for sinusoidal inputs of different wavelengths, amplitudes and vehicle speeds. The simulation model is validated with data measured on a vehicle traversing an APG course. The proposed model agrees very well with the measured data. Based on the validated model, studies on the influence of suspension parameters on the ride comfort of a tracked vehicle are carried out.  相似文献   

16.
This paper deals with the external motion resistance of a tracked vehicle caused by rut formation (sinkage) or compression of soil under the tracks. It is shown that the relationship between the applied load and the sinkage for a loading test using a plate is represented by a hyperbola. Based on the above relationship, the external motion resistance caused by the rut formation of a tracked vehicle is estimated by considering the work done by overcoming the ground pressure and the resistance. Further, measurements of the external motion resistance were carried out by using a tracked vehicle and the experimental results are compared with the theoretical ones, and the reliability of the above method is confirmed experimentally.  相似文献   

17.
Numerical analysis was developed to calculate the steering properties of a rigid suspension tracked vehicle turning on soft terrain. The developed numerical analysis is based on a method to solve a set of non-linear equations. To verify the numerical analysis, an experiment on a model-tracked vehicle turning with a steering ratio of 1.6 on a loose sandy terrain was carried out. The comparison between measured and calculated values shows that the numerical analysis can predict sinkage, slip ratios and turning radius within an error amount of 15%.  相似文献   

18.
The relationship between contact pressure and sinkage must be represented by a mathematical model to estimate the sinkage and the motion resistance due to a vehicle. In this study an approximate and simple pressure-sinkage model is proposed. This model takes into account the effect of the size of the penetration plate on soil response, and includes two soil values that can be obtained by a single plate penetration test. It is submitted that the sinkage and the motion resistance of a tracked vehicle can be estimated by means of the proposed model.  相似文献   

19.
Tracked vehicles are exposed to severe ride environment due to dynamic terrain-vehicle interactions. Hence it is essential to understand the vibration levels transmitted to the vehicle, as it negotiates different types of terrains at different speeds. The present study is focused on the development of single station representation of tracked vehicles with trailing arm hydro-gas suspension systems, simulating the ride dynamics. The kinematics of hydro-gas suspension system have been derived in order to determine the non-linear stiffness characteristics at various charging pressures. Then, incorporating the actual suspension kinematics, non-linear governing equations of motion have been derived for the sprung and unsprung masses and solved by coding in Matlab. Effect of suspension non-linear dynamics on the single station ride vibrations have been analyzed and validated with a multi-body dynamics model developed using MSC.ADAMS. The above mathematical models would help in estimating the ride vibration levels of the tracked vehicle, negotiating different types of terrains at various speeds and also enable the designers to fine-tune the suspension characteristics such that the ride vibrations are within acceptable limits. The mathematical ride model would also assist in development of non-linear ride vibration model of full tracked vehicle and estimate the sprung mass dynamics.  相似文献   

20.
Soil strength, surface micro-relief, bulk density and saturated hydraulic conductivity were measured for two soil types (Dd 1.13 and Uc 2.12) at Shoalwater Bay, Queensland, before and after the passage of a tracked vehicle. Such impact of a vehicle resulted in a decrease in the strength of the surface soil, an increase in bulk density, a decrease in saturated hydraulic conductivity and the formation of ruts. The degree of change depended on soil type, the number of vehicular passes and whether the vehicle was travelling in a straight line or turning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号