首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A large body of literature is focused on the accurate determination of a gel point for systems undergoing a sol-gel phase transition. Investigation into the limiting strain and stress for linear viscoelastic behaviour at various stages of a phase transition such as gelation is a subject that is rarely commented on. The small amplitude oscillatory rheological behaviour of a biopolymer cross-linker system through a thermally activated sol-gel transition is presented. Mechanical spectra were interpreted through application of the gelation criteria of Chambon and Winter (Winter and Chambon 1986; Chambon and Winter 1987), where the (so-called gel strength) parameter S, and relaxation exponent, n are obtained. A detailed study of the limit of linear viscoelasticity yields important trends in critical stress (σ°c) and critical strain (γ°c) limits highlighting the possible experimental difficulties associated with mechanical measurements obtained in close proximity to the gel point. Received: 17 March 2000 Accepted: 2 October 2000  相似文献   

2.
Molecular dynamics (MD) simulations using Morse interaction potential are performed in studies of [110] symmetrical tilt grain boundary (GB) structures with mis-orientation angles 50.5°(Σ11), 129.5°(Σ11), 70.5°(Σ3) and 109.5°(Σ3) at various tempratures. The GB structures are found to start local disordering at about 0.5T m (T m is the melting point of aluminium) for 50.5°(Σ11), 0.32T m for 129.5° (Σ11) and 0.38T m for 70.5°(Σ3), respectively. These results agree with conclusions deduced from the anelastic measurements. But, for twin-boundary structure 109.5°(Σ3), this disordering has not been found even when temperature increases up to 0.9T m . The project supported by the National Natural Science Foundation of China and Laboratory for Non-linear Mechanics of Continuous Media, Institute of Mechanics, Academia Sinica.  相似文献   

3.
The transition from regular reflection (RR) to Mach reflection (MR) as a plane shock wave diffracts around a triangular mountain of 45° inclination is analysed in this paper, both by optical measurement in a shock tube and by numerical simulation the numerical method developed by Li Yingfan[1] is of the FLIC type with triangular mesh. The dependence of the critical transition point Lk ofRR→MR on shock Mach numberM i is analyzed and the variations of the incidence angle ω i of the impinging shock and the reflection angle ω r with the distanceL * are investigated. Our experimental and numerical results agree well with the theoretical results of Iton and Italya.  相似文献   

4.
The leeside vortex structures on delta wings with sharp leading edges were studied for supersonic flow at the Institute of Theoretical and Applied Mechanics of the Russian Academy of Sciences in Novosibirsk. The experiments were carried out with three wings with sweep angles of χ=68°, 73°, and 78° and parabolic profiles in the 0.6 × 0.6 m2 test section of the blow-down wind tunnel T-313 of the institute. The test conditions were varied from Mach numbers M=2 to 4, unit Reynolds numbers from Re l=26 × 106 to 56 × 106 m−1, and angles of attack from α=0° to 22°. The results of the investigations revealed that for certain flow conditions shocks are formed above, below, and between the primary vortices. The experimental data were accurate enough to detect the onset of secondary and tertiary separation as well as other boundaries. The various flow regimes discussed in the literature were extended in several cases. The major findings are reported. Received: 6 September 1999/Accepted: 24 January 2000  相似文献   

5.
Effects of drift angle on model ship flow   总被引:1,自引:0,他引:1  
The effects of drift angle on model ship flow are investigated through towing tank tests for the Series 60 CB=0.6 cargo/container model ship. Resistance, side force, drift moment, sinkage, trim, and heel data are procured for a range of drift angles β and Froude numbers (Fr) and the model free condition. Detailed free-surface and mean velocity and pressure flow maps are procured for high and low Fr=0.316 and 0.16 and β=5° and 10° (free surface) and β=10° (mean velocity and pressure) for the model fixed condition (i.e. fixed with zero sinkage, trim, and heel). Comparison of results at high and low Fr and previous data for β=0° enables identification of important free-surface and drift effects. Geometry, conditions, data, and uncertainty analysis are documented in sufficient detail so as to be useful as a benchmark for computational fluid dynamics (CFD) validation. The resistance increases linearly with β with same slope for all Fr, whereas the increases in the side force, drift moment, sinkage, trim, and heel with β are quadratic. The wave profile is only affected near the bow, i.e. the bow wave amplitude increases/decreases on the windward/leeward sides, whereas the wave elevations are affected throughout the entire wave field. However, the wave envelope angle on both sides is nearly the same as β=0°, i.e. the near-field wave pattern rotates with the hull and remains within a similar wave envelope as β=0°. The wave amplitudes are significantly increased/decreased on the windward/leeward sides. The wake region is also asymmetric with larger wedge angle on the leeward side. The boundary layer and wake are dominated by the hull vortex system consisting of fore body keel, bilge, and wave-breaking vortices and after body bilge and counter-rotating vortices. The occurrence of a wave-breaking vortex for breaking bow waves has not been previously documented in the literature. The trends for the maximum vorticity, circulation, minimum axial velocity, and trajectories are discussed for each vortex. Received: 16 September 1999/Accepted: 8 November 2001  相似文献   

6.
Tensile impact experiments of EC8.0−24×7 glass fiber bundles at different low temperaturesT(14°C, −40°C and −10°C) and strain rates ɛ were carried out, and complete stress-strain curves were obtained. Within the range of the experiment temperatures and strain rates, it is found that the initial modulusE, the ultimate strength σmax and the unstable strain ɛ b of the glass fiber bundles all increase with ɛ at an identicalT. At an identical ɛ, with the decrease ofT, E and σmax increase; but ɛ b increases when 10°C>T>−40°C and decreases when −40°C>T>−100°C. The strain-rate- and temperature-dependent bimodal Weibull statistical constitutive theory was adopted for the statistical analysis of the experimental results, and the Weibull parameters of single fiber were obtained. The results show that the bimodal Weibull distribution function is suitable to represent the strength distribution of the glass fiber at low temperature and different strain rates. The differences in the mechanical properties between EC8.0−24×7 and EC5.5−12 ×14 glass fiber bundles were also discussed. Project supported by the National Natural Science Foundation of China (No. 19772058).  相似文献   

7.
 Turbulence measurements are reported on the three-dimensional turbulent boundary layer along the centerline of the flat endwall in a 30° bend. Profiles of mean velocities and Reynolds stresses were obtained down to y +≈2 for the mean flow and y +≈8 for the turbulent stresses. Mean velocity data collapsed well on a simple law-of-the-wall based on the magnitude of the resultant velocity. The turbulence intensity and turbulent shear stress magnitude both increased with increased three-dimensionality. The ratio of these two quantities, the a 1 structure parameter, decreased in the central regions of the boundary layer and showed profile similarity for y +<50. The shear stress vector angle lagged behind the velocity gradient vector angle in the outer region of the boundary layer, however there was an indication that the shear stress vector tends to lead the velocity gradient vector close to the wall. Received: 16 July 1996/Accepted: 14 July 1997  相似文献   

8.
In order to evaluate characteristics of the liquid film flow and their influences on heat and mass transfer, measurements of the instantaneous film thickness using a capacitance method and observation of film breakdown are performed. Experimental results are reported in the paper. Experiments are carried out at Re = 250–10000, T in = 20–50°C and three axial positions of vertically falling liquid films for film thickness measurements. Instantaneous surface waveshapes are given by the interpretation of the test data using the cubic spline method. The correlation of the mean film thickness versus the film Reynolds number is also given by fitting the test data. It is revealed that the surface wave has nonlinear behavior. Observation of film breakdown is performed at Re = 1.40 × 103–1.75 × 104 and T in = 85–95°C. From experimental results, the correlation of the film breakdown criterion can be obtained as follows: Bd = 1.567 × 10−6 Re 1.183  相似文献   

9.
The near-ground flow structure of tornadoes is of utmost interest because it determines how and to what extent civil structures could get damaged in tornado events. We simulated tornado-like vortex flow at the swirl ratios of S = 0.03–0.3 (vane angle θv = 15°–60°), using a laboratory tornado simulator and investigated the near-ground-vortex structure by particle imaging velocimetry. Complicated near-ground flow was measured in two orthogonal views: horizontal planes at various elevations (z = 11, 26 and 53 mm above the ground) and the meridian plane. We observed two distinct vortex structures: a single-celled vortex at the lowest swirl ratio (S = 0.03, θv = 15°) and multiple suction vortices rotating around the primary vortex (two-celled vortex) at higher swirl ratios (S = 0.1–0.3, θv = 30°–60°). We quantified the effects of vortex wandering on the mean flow and found that vortex wandering was important and should be taken into account in the low swirl ratio case. The tangential velocity, as the dominant velocity component, has the peak value about three times that of the maximum radial velocity regardless of the swirl ratio. The maximum velocity variance is about twice at the high swirl ratio (θv = 45°) that at the low swirl ratio (θv = 15°), which is contributed significantly by the multiple small-scale secondary vortices. Here, the results show that not only the intensified mean flow but greatly enhanced turbulence occurs near the surface in the tornado-like vortex flow. The intensified mean flow and enhanced turbulence at the ground level, correlated with the ground-vortex interaction, may cause dramatic damage of the civil structures in tornadoes. This work provides detailed characterization of the tornado-like vortex structure, which has not been fully revealed in previous field studies and laboratory simulations. It would be helpful in improving the understanding of the interaction between the tornado-like vortex structure and the ground surface, ultimately leading to better predictions of tornado-induced wind loads on civil structures.  相似文献   

10.
Creep experiments with a solution of polystyrene (M w = 2.6 MDa, 16 vol.%, 25 °C) in diethyl phthalate are reported for stresses between 100 and 2,500 Pa (≈ 3G N 0/4). The aim was to look for a flow transition as reported for strongly entangled poly(isobutylene) solutions. The experiments with the polystyrene solution were repeated for cone angles of 2, 4, and 6° (radius 15 mm) and showed no dependence on cone angle. The Cox–Merz rule was not fulfilled for stresses beyond about 800 Pa. The tangential observation with a CCD camera showed that the edge took a concave shape because of the second normal stress difference. Beyond 1,000 Pa, the concave edge develops into a crevice, thus substantially reducing the effective cross-section. This leads to runaway in a constant torque experiment. At p 21 = 800 Pa, head-on particle tracking confirms that the originally linear velocity profile takes a gooseneck shape, thus revealing shear banding. When the creep stress is stepped down to 100 Pa, this velocity profile evolves back to a linear one. The conclusion from this work is that even if nonlinear creep experiments are reproducible and a steady state is reached, this does not mean that the flow field is homogeneous. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27–29, 2006.  相似文献   

11.
 An experimental investigation was carried out to study the enhancement of the heat transfer from a heated flat plate fitted with rectangular blocks of 1 × 2 × 2 cm3 dimensions in a channel flow as a function of Reynolds number (Reh), spacing (S y ) of blocks in the flow direction, and the block orientation angle (α) with respect to the main flow direction. The experiments were performed in a channel of 18 cm width and 10 cm height, with air as the working fluid. For fixed S x =3.81 cm, which is the space between the blocks in transverse to the flow direction, the experimental ranges of the parameters were S y =3.33–4.33 cm, α=0–45°, Reh=7625–31550 based on the hydraulic diameter and the average velocity at the beginning of the test section in the channel. Correlations for Nusselt number were developed, and the ratios of heat transfer with blocks to those with no blocks were given. The results indicated that the heat transfer could be enhanced or reduced depending on the spacing between blocks, and the block orientation angle. The maximum heat transfer rate was obtained at the orientation angle of 45°. Received on 13 December 2000 / Published online: 29 November 2001  相似文献   

12.
Two distinct oligomeric species of similar mass and chemical functionality (M w≈2,000 g/mol), one a linear methyl methacrylate oligomer (radius of gyration R g≈1.1 nm) and the other a hybrid organic–inorganic polyhedral silsesquioxane nanocage (methacryl-POSS, r≈1.0 nm), were subjected to thermal and rheological tests to compare the behaviors of these geometrically dissimilar molecules over the entire composition range. The glass transition temperatures of the blends varied monotonically between the glass transition temperatures of the pure oligomer (T g=−47.3°C) and the pure POSS (T g=−61.0°C). Blends containing high POSS contents (with volume fraction φ POSS≥0.90) exhibited enhanced enthalpy relaxation in differential scanning calorimetry (DSC) measurements, and the degree of enthalpy relaxation was used to calculate the kinetic fragility indices m of the oligomeric MMA (m=59) and the POSS (m=74). The temperature dependences of the viscosities were fitted by the free-volume based Williams–Landel–Ferry (WLF) and Vogel–Fulcher–Tammann (VFT) framework and a dynamic scaling relation. The calculated values of the fragility from the WLF–VFT fits were similar for the POSS (m=82) and for the oligomer (m=76), and the dynamic scaling exponent was similar for the oligomeric MMA and the POSS. Within the range of known fragilities for glass-forming liquids, the temperature dependence of the viscosity was found to be similarly fragile for the two species. The difference in shape of the nanocages and oligomer chains is unimportant in controlling the glass-forming properties of the blends at low volume fractions (φ POSS<0.20). However, at higher volume fractions, adjacent POSS cages begin to crowd each other, leading to an increase in the fractional free volume at the glass transition temperature and the observed enhanced enthalpy relaxation in DSC.  相似文献   

13.
Inviscid gas flows in nozzles with a uniform exit flow and contours profiled starting from the lower point of a steeply converging region with an angle θ = −90° are analyzed. It is shown that there exists a class of convergent-divergent contours, within which the flow is characterized by the fact that the line θ = 0 of zero angle of the velocity vector inclination to the x axis consists of two oppositely-directed regions located partially or even completely ahead of the minimum section, while near the minimum sections their regions convex inward the gas stream are in decelerated flow. The minimum sections of the nozzles with M e → 1 approach the center of the nozzle from the right.  相似文献   

14.
G. Emanuel  H. Hekiri 《Shock Waves》2007,17(1-2):85-94
A theory is developed for the vorticity and its substantial derivative just downstream of a curved shock wave, the resulting formulas are exact, algebraic, and explicit. Analysis is for a cylinder-wedge or sphere-cone body, at zero incidence, whose downstream half-angle is θb. Derived formulas directly depend only on the ratio of specific heats, γ, the freestream Mach number, M 1, the local slope and curvature of the shock, and the dimensionality parameter, σ, which is zero for a two-dimensional shock and unity for an axisymmetric shock. In turn, the slope and curvature depend on γ, M 1, and θb. Numerical results are provided for a bow shock in which θb is 5°, 10°, or 15°, M 1 is 2, 4, or 6, and γ = 1.4. There is little dependence on the half angle but a strong dependence on the freestream Mach number and on dimensionality. For vorticity and its substantial derivative, the dimensionality dependence gradually decreases with increasing Mach number. In comparison to the two-dimensional case, an axisymmetric shock generates considerable vorticity in a region relatively close to the symmetry axis. Moreover, the magnitude of the vorticity, in this region, is further enhanced in the flow downstream of the shock. This dimensionality difference in vorticity and its substantial derivative is attributed to the three-dimensional relief effect in an axisymmetric flow.
  相似文献   

15.
The results of an experimental wind-tunnel investigation of the flow patterns on the swept wing of a model aircraft realized for pitching oscillations with an amplitude A α = 5° with respect to setup angles of attack α0 = 10 and 16° are presented.  相似文献   

16.
The streamwise evolution of an inclined circular cylinder wake was investigated by measuring all three velocity and vorticity components using an eight-hotwire vorticity probe in a wind tunnel at a Reynolds number Red of 7,200 based on free stream velocity (U ) and cylinder diameter (d). The measurements were conducted at four different inclination angles (α), namely 0°, 15°, 30°, and 45° and at three downstream locations, i.e., x/d = 10, 20, and 40 from the cylinder. At x/d = 10, the effects of α on the three coherent vorticity components are negligibly small for α ≤ 15°. When α increases further to 45°, the maximum of coherent spanwise vorticity reduces by about 50%, while that of the streamwise vorticity increases by about 70%. Similar results are found at x/d = 20, indicating the impaired spanwise vortices and the enhancement of the three-dimensionality of the wake with increasing α. The streamwise decay rate of the coherent spanwise vorticity is smaller for a larger α. This is because the streamwise spacing between the spanwise vortices is bigger for a larger α, resulting in a weak interaction between the vortices and hence slower decaying rate in the streamwise direction. For all tested α, the coherent contribution to [`(v2)] \overline{{v^{2}}} is remarkable at x/d = 10 and 20 and significantly larger than that to [`(u2)] \overline{{u^{2}}} and [`(w2)]. \overline{{w^{2}}}. This contribution to all three Reynolds normal stresses becomes negligibly small at x/d = 40. The coherent contribution to [`(u2)] \overline{{u^{2}}} and [`(v2)] \overline{{v^{2}}} decays slower as moving downstream for a larger α, consistent with the slow decay of the coherent spanwise vorticity for a larger α.  相似文献   

17.
Aerodynamic forces and flow fields of a two-dimensional hovering wing   总被引:1,自引:1,他引:0  
This paper reports the results of an experimental investigation on a two-dimensional (2-D) wing undergoing symmetric simple harmonic flapping motion. The purpose of this investigation is to study how flapping frequency (or Reynolds number) and angular amplitude affect aerodynamic force generation and the associated flow field during flapping for Reynolds number (Re) ranging from 663 to 2652, and angular amplitudes (α A) of 30°, 45° and 60°. Our results support the findings of earlier studies that fluid inertia and leading edge vortices play dominant roles in the generation of aerodynamic forces. More importantly, time-resolved force coefficients during flapping are found to be more sensitive to changes in α A than in Re. In fact, a subtle change in α A may lead to considerable changes in the lift and drag coefficients, and there appears to be an optimal mean lift coefficient around α A = 45°, at least for the range of flow parameters considered here. This optimal condition coincides with the development a reverse Karman Vortex street in the wake, which has a higher jet stream than a vortex dipole at α A = 30° and a neutral wake structure at α A = 60°. Although Re has less effect on temporal force coefficients and the associated wake structures, increasing Re tends to equalize mean lift coefficients (and also mean drag coefficients) during downstroke and upstroke, thus suggesting an increasing symmetry in the mean force generation between these strokes. Although the current study deals with a 2-D hovering motion only, the unique force characteristics observed here, particularly their strong dependence on α A, may also occur in a three-dimensional hovering motion, and flying insects may well have taken advantage of these characteristics to help them to stay aloft and maneuver. An erratum to this article can be found at  相似文献   

18.
This research investigates the influence of monomer composition on the thermal transitions, mi crostructure, and viscoelastic properties of thermotro pic liquid crystalline polymers (LCPs) based on 1, 4-hydroxy-benzoic acid (B) and 2,6-hydroxy-naphthoic acid (N). Compositions B–N of 1:1, 1:3, 3:1, and 2:1 mol% were studied. The solid-to-nematic transition T s→n was greatly influenced by the monomer composition, ranging from 230 to 280 °C. However, the decomposition temperature T dec was independent of composition, all the materials degrading at T dec = 509 °C. Polarized optical microscopy showed a threaded texture in the nematic phase. Fiber X-ray diffraction showed aperiodic meridional maxima for all LCPs, the number of maxima depended on composition. B–N 3:1 and 1:3 mol% favor the orthorhombic crystallographic phase whereas the 1:1 and 2:1 mol% crystallized in a pseudohexagonal phase. Dynamic time sweeps showed that the nematic phases are stable at the temperatures studied. Strain sweeps showed the existence of a linear viscoelastic (LVE) regime. The LVE properties ranged from predominantly viscous (G < G) for the 1:1 mol% composition to predominantly elastic (G > G) and with a well-defined rubber-like regime for the 1:3 mol% composition, resembling the rheology of flexible polymer melts. The persistence length q appears to be the parameter driving the rheological behavior.
Angel Romo-UribeEmail:
  相似文献   

19.
A novel technique which uses a microfabricated shock target array assembly is described, where the passage of a shock front through a thin (0.5μm) polycrystalline layer and the subsequent unloading process is monitored in real time with ultrafast coherent Raman spectroscopy. Using a high repetition rate laser shock generation technique, high resolution, coherent Raman spectra are obtained in shocked anthracene and in a high explosive material, NTO, with time resolution of ∼ 50 ps. Spectroscopic measurements are presented which yield the shock pressure (up to 5 GPa), the shock velocity (∼ 4 km/s), the shock front risetime (t r < 25 ps), and the temperature (∼ 400°C). A brief discussion is presented, how this new technique can be used to determine the Hugoniot, the equation of state, the entropy increase across the shock front, and monitor shock induced chemical reactions in real time. Received 28 October 1996 / Accepted 12 November 1996  相似文献   

20.
Experimental results for high-temperature deformation of an iron-based structural material in the temperature ranges including the points of the Feα→Feβ→Feψ transition are given. It is shown that the strain-strength properties of the material change nonmonotonically on the interval 700°C<T<1000°C and that the internal phase-structural changes exert an effect on the thermal effects. Approximating dependences that permit one to describe deformation processes in the indicated temperature ranges upon uniaxial loading are proposed. Lavrent'ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 6, pp. 152–156, November–December, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号