首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, in silico models have been developed to predict drug pharmacokinetics. However, before application, they must be validated and, for that, information about structurally similar reference compounds is required. A chiral liquid chromatography method with ultraviolet detection (LC‐UV) was developed and validated for the simultaneous quantification of BIA 2–024, BIA 2–059, BIA 2–265, oxcarbazepine, eslicarbazepine (S‐licarbazepine) and R‐licarbazepine in mouse plasma and brain. Compounds were extracted by a selective solid‐phase extraction procedure and their chromatographic separation was achieved on a LiChroCART 250–4 ChiraDex column using a mobile phase of water–methanol (92:8, v/v) pumped at 0.7 mL/min. The UV detector was set at 235 nm. Calibration curves were linear (r2 ≥ 0.996) over the concentration ranges of 0.2–30 µg/mL for oxcarbazepine, eslicarbazepine and R‐licarbazepine; 0.2–60 µg/mL for the remaining compounds in plasma; and 0.06–15 µg/mL for all the analytes in brain homogenate. Taking into account all analytes at these concentration ranges in both matrices, the overall precision did not exceed 9.09%, and the accuracy was within ±14.3%. This LC‐UV method is suitable for carrying out pharmacokinetic studies with these compounds in mouse in order to obtain a better picture of their metabolic pathways and biodistribution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A simple and rapid high‐performance liquid chromatographic method with ultraviolet detection was developed for the quantitative determination of retigabine, known also as ezogabine, in human plasma. The assay uses a simple solid‐phase extraction for sample preparation and direct injection of the extract into the chromatograph. Flupirtine is used as an internal standard. Chromatographic separation is achieved on a C18 Chromolith column (Chromolith Performance, 100 × 4.6 mm i.d.), using as mobile phase water/acetonitrile/methanol (72:18:10 v/v/v) mixed with 0.1% of 85% phosphoric acid. Isocratic elution is conducted at a flow rate of 1.5 mL min−1. The total duration of a chromatographic run is 7 min. Calibration curves are linear over the 25–2000 ng mL−1 concentration range, with a limit of quantitation of 25 ng mL−1. Other performance characteristics include high precision (intra‐ and inter‐day coefficients of variation ≤12.6%) and high accuracy (99.7%–108.7%). The method is suitable for the investigation of concentration–response relationships in patients receiving therapeutic doses of retigabine.  相似文献   

3.
A high-performance liquid chromatographic method was developed, validated and applied for the determination of hydrochlorothiazide in human plasma. The effects of mobile phase composition, buffer concentration, mobile phase pH and concentration of organic modifiers on retention of hydrochlorothiazide and internal standard were investigated. The method involves solid-phase extraction on RP-select B cartridges followed by isocratic reversed-phase chromatography on a Hibar Lichrospher 100 RP-8 column with UV detection at 230 nm. The recovery, selectivity, linearity, precision and accuracy of the method were evaluated from spiked human plasma samples. Limit of quantification was 10 ng mL(-1). The method has been implemented to monitor hydrochlorothiazide levels in patient samples.  相似文献   

4.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
For the first time, a selective and sensitive chiral HPLC-UV method was developed and fully validated for the simultaneous quantification of eslicarbazepine acetate (ESL), carbamazepine (CBZ), S-licarbazepine (S-Lic), R-licarbazepine (R-Lic), oxcarbazepine (OXC) and carbamazepine-10,11-epoxide (CBZ-E), in mouse plasma and brain homogenate supernatant. After the addition of chloramphenicol as the internal standard, samples were processed using an SPE procedure. The chiral chromatographic analysis was carried out on a LiChroCART 250-4 ChiraDex column, employing a mobile phase of water and methanol (88:12, v/v) pumped at 0.9 mL/min and the UV detector set at 235 nm. The assay was linear (r(2) ≥0.995) for ESL, CBZ, OXC, S-Lic, R-Lic and CBZ-E in the range of, respectively, 0.2-4, 0.4-30, 0.1-60, 0.2-60, 0.2-60 and 0.2-30 μg/mL, in plasma, and of 0.06-1.5 μg/mL for ESL, 0.12-15 μg/mL for CBZ and CBZ-E and 0.06-15 μg/mL for OXC and both licarbazepine (Lic) enantiomers in brain homogenate supernatant. The overall precision was within 8.71% and accuracy ranged from -7.55 to 8.97%. The recoveries of all the compounds were over 92.1%. Afterwards, the application of the method was demonstrated using real plasma and brain samples obtained from mice administered simultaneously with ESL and CBZ.  相似文献   

6.
Antimicrobial prophylactic dosing of morbidly obese patients may differ from normal weighted individuals owing to alterations in drug tissue distribution. Drug subcutaneous tissue distribution can be investigated by microdialysis patients and animals. The need for cefazolin prophylactic dose adjustment in obese patients remains under discussion. The paper describes the validation of an HPLC‐UV method for cefazolin quantification in plasma and microdialysate samples from clinical and pre‐clinical studies. A C18 column with an isocratic mobile phase was used for drug separation, with detection at 272 nm. Total and unbound cefazolin lower limit of quantitation was 5 μg/mL in human plasma, 2 μg/mL in rat plasma, and 0.5 and 0.025 μg/mL in human and rat microdialysate samples, respectively. The maximum intra‐ and inter‐day imprecisions were 10.7 and 8.1%, respectively. The inaccuracy was <9.7%. The limit of quantitation imprecision and inaccuracy were < 15%. Cefazolin stability in the experimental conditions was confirmed. Cefazolin plasma concentrations and subcutaneous tissue penetration were determined by microdialysis in morbidly obese patients (2 g i.v. bolus) and diet‐induced obese rats (30 mg/kg i.v. bolus) using the method. This method has the main advantages of easy plasma clean‐up and practicability and has proven to be useful in cefazolin clinical and pre‐clinical pharmacokinetic investigations.  相似文献   

7.
A HPLC method has been developed for the simultaneous determination of seven tricyclic antidepressants (TCAs) and seven metabolites in human plasma. The analyte separation was obtained using a C8 reversed phase column and a mobile phase composed of 68% aqueous phosphate buffer at pH 3.0 and 32% ACN. The UV detector was set at 220 nm and loxapine was used as the internal standard. A careful pre‐treatment procedure for plasma samples was developed, using SPE on C2 cartridges, which gives satisfactory extraction yields (>80%) and good sample purification. The LOQs were always lower than 9.1 ng/mL and the LODs always lower than 3.1 ng/mL for all analytes. The method was successfully applied to plasma samples from depressed patients undergoing therapy with one or more TCA drugs. Precision data (RSD <8.1%), as well as accuracy results (recovery >80%), were satisfactory and no interference from other drugs was found. Hence the method seems to be suitable for the therapeutic drug monitoring of patients treated with TCAs under monotherapy or polypharmacy regimens.  相似文献   

8.
A simple, rapid, selective and sensitive HPLC‐UV method has been developed and validated for the determination of ponicidin in rat plasma. The analyte was extracted from rat plasma by liquid–liquid extraction with ethyl acetate as the extraction solvent. The LC separation was performed on a Zorbax Eclipse XDB C18 analytical column (150 × 4.6 mm i.d., 5 µm) with an isocratic mobile phase consisting of methanol–water–phosphoric acid (45:55:0.01, v/v/v) at a flow rate of 1.0 mL/min. There was a good linearity over the range of 0.1–25 µg/mL (r = 0.9995) with a weighted (1/C2) least square method. The lower limit of quantification was proved to be 0.1 µg/mL. The accuracy was within ±10.0% in terms of relative error and the intra‐ and inter‐day precisions were less than 9.1% in terms of relative standard deviation. After validation, the method was successfully applied to characterize the pharmacokinetics of ponicidin in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A newly developed LC—APCI mass spectrometric method is described for human plasma determination of atovaquone using lapachol internal standard. A single‐step protein precipitation technique for plasma extraction of atovaquone achieving mean recovery of 94.17% (CV 8%) without compromising sensitivity (limit of quantitation 50.3 ng/mL) or linearity (50.3 ng/mL—23924.6 ng/mL) is delineated in this paper. Heated nebulizer in negative multiple reaction monitoring mode was employed with transitions m/z 365.2 → m/z 337.1 and m/z 240.9 → m/z 185.7 for atovaquone and lapachol respectively in this liquid chromatographic–tandem mass spectrometric method. Excellent chromatographic separation on a Synergi 4 μ Polar‐RP 80A (150 × 2.0 mm) column, using 100 μL of plasma extraction volume along with 10 μL of injection load, completing analysis run‐time within 2.5 min, highlights this simple yet unique bioanalytical method. The developed method can be successfully applied to pharmacokinetic studies on atovaquone suspension administered in healthy volunteers or HIV‐infected patients. Moreover full method validation results not published before are presented and discussed in detail for the first time in this article. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
A simple, specific, sensitive and reproducible high‐performance liquid chromatography (HPLC) assay method has been developed and validated for the estimation of odanacatib in rat and human plasma. The bioanalytical procedure involves extraction of odanacatib and itraconazole (internal standard, IS) from a 200 μL plasma aliquot with simple liquid–liquid extraction process. Chromatographic separation was achieved on a Symmetry Shield RP18 using an isocratic mobile phase at a flow rate of 0.7 mL/min. The UV detection wave length was 268 nm. Odanacatib and IS eluted at 5.5 and 8.6 min, respectively with a total run time of 10 min. Method validation was performed as per US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over a concentration range of 50.9–2037 ng/mL (r2 = 0.994). The intra‐ and inter‐day precisions were in the range of 2.06–5.11 and 5.84–13.1%, respectively, in rat plasma and 2.38–7.90 and 6.39–10.2%, respectively, in human plasma. The validated HPLC method was successfully applied to a pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A high-performance liquid chromatographic method for the simultaneous determination of di(2-ethylhexyl)phthalate (DEHP) and its major metabolite mono(2-ethylhexyl)phthalate (MEHP) in seminal plasma was developed and validated. The method involves liquid-liquid extraction followed by isocratic reversed-phase chromatography with diode-array detection. The recovery, selectivity, linearity, precision and accuracy of the method were evaluated from the analysis of spiked seminal plasma samples. The effect of mobile-phase composition and pH on the retention of the target analytes was investigated. The limits of detection were 0.010 and 0.015 microg/mL, for DEHP and MEHP, respectively. This method was used to analyze real samples in support of clinical studies on these potential endocrine disruptors.  相似文献   

12.
A simple and sensitive bioanalytical method was developed and validated for determination of etoposide in plasma and microdialysis samples of Walker‐256 tumor‐bearing rats. A microdialysis probe was implanted in the center of a subcutaneous tumor and Ringer's solution was used as perfusion medium. Chromatographic separation was conducted on a Shimadzu CLC‐C8 column using a mobile phase consisting of water–acetonitrile (70:30; v/v) adjusted to pH 4.0 ± 0.1 with formic acid at a gradient flow rate of 1.0–0.6 mL/min, an injection volume of 30 μL and UV detection at 210 nm. Microdialysate samples were analyzed without processing and plasma samples (100 μL) were spiked with phenytoin as internal standard (IS) (1 µg/mL) followed by extraction with tert‐butyl methyl ether. The organic layer was evaporated and reconstituted with 100 μL of mobile phase before injection. The methods for plasma and microdialysate were linear in the ranges of 25–10,000 ng/mL and of 10–1500 ng/mL, respectively. All the validation parameters such as intra‐ and inter‐day precision and accuracy and stability were within the limits established by international guidelines. The present method was successfully applied in the investigation of etoposide pharmacokinetics in rat plasma and microdialysate tumor samples following a single 15 mg/kg intravenous dose. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Maraviroc is a first‐in‐class CCR5 antagonist that shows potent anti‐HIV‐1 activity in vitro and in vivo and is well tolerated in both healthy volunteers and HIV‐1‐infected patients. The method for determination of maraviroc (UK‐427,857) and its major metabolite (UK‐408,027) in human plasma consists of a protein‐precipitation procedure and analysis by liquid chromatography/tandem mass spectrometry using positive ion TurboIonSpray® ionization and multiple reaction monitoring. The assay has been validated over a concentration range of 0.500–500 ng/mL for both analytes. The determinations of maraviroc in human cerebrospinal fluid (0.500–500 ng/mL) and in urine (5.00–5000 ng/mL) have also been validated but do not include measurement of the metabolite. The validations included extraction recovery, intra‐assay and inter‐assay precision and accuracy, stability of stock and spiking solutions, freeze–thaw stability, matrix stability, processed‐extract stability, and evaluation of potential interferences from selected medications in plasma or urine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
A high-performance liquid chromatographic method was developed, validated and applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and its acetylated metabolite (acetyl-5-ASA) in human plasma. The method involves liquid-liquid extraction with methanol followed by isocratic reversed-phase chromatography on a Kromasil KR100 C(18) column with electrochemical detection. The recovery, selectivity, linearity, precision and accuracy of the method were evaluated from spiked human plasma samples. The effects of mobile phase composition, buffer concentration, mobile phase pH and concentration of organic modifiers on retention of 5-ASA, acetyl 5-ASA and internal standard were investigated. Limits' of detection were 5 ng/mL for 5-ASA and 10 ng/mL for acetyl-5-ASA, respectively. The method can be used for supporting therapeutical drug monitoring and pharmacokinetic studies.  相似文献   

15.
《中国化学会会志》2018,65(8):989-994
In this study, an electromembrane extraction (EME) method combined with a simple HPLC‐UV analysis was developed and validated for the determination of valproic acid in human plasma samples. The major parameters influencing EME procedure, namely the solvent composition, voltage, pH of acceptor and donor solutions, salt effect, and time of extraction, were evaluated and optimized. The drug was extracted from the donor aqueous sample solution (pH 5) to the acceptor aqueous solution (pH 13). The donor and acceptor phases were separated by a hollow fiber dipped in 1‐octanol as a supported liquid membrane. A voltage of 60 V during 25 min was applied as the driving force. The drug concentration enrichment factor obtained was >125, which enhanced the sensitivity of the method. The limit of detection and the limit of quantitation were 0.2 and 0.5 μg/mL, respectively. The proposed method was successfully applied to a human plasma sample, with a relative recovery of 75%. The method was linear over the range 0.5–10 μg/mL for valproic acid (R2 > 0.9996) with a repeatability (%RSD) between 0.9 and 3.3% (n = 3). Valproic acid is an anticonvulsant drug with poor UV absorption, and EME can improve the sensitivity of HPLC‐UV for the determination of valproic acid in plasma samples.  相似文献   

16.
PCK3145 is a synthetic peptide, derived from the Prostate Secreted Protein 94 (PSP94), with promising in vitro and animal in vivo results in prostate cancer. The aim of the present study was to develop and validate a fast and robust ultra‐high‐performance liquid chromatography with ultraviolet detection for the determination of PCK3145 in human plasma which would be suitable for the assessment of PCK3145 stability to proteolytic degradation. Following protein precipitation, chromatographic separation was carried out on an Aeris Peptide C18 column with mobile phase consisting of acetonitrile–water at a flow‐rate of 0.50 mL/min. The calibration curve was linear over the range 0.50–20.00 μg/mL. Intra‐ and inter‐day percentage relative standard deviation and relative error were ≤10%. The limit of detection and the lower limit of quantification were 0.15 and 0.50 μg/mL, respectively. Recovery of PCK3145 from human plasma was ≥96%. The peptide presented high stability in whole blood and in human plasma (>98% intact peptide after 24 h incubation at 37°C in human plasma), which represents a distinctive advantage in the therapeutic use of the compound. This is the first validated UHPLC method for the determination of PCK3145 reported, and it was successfully applied in the study of the proteolytic stability of PCK3145 in human plasma ex vivo. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A rapid and sensitive reversed-phase high-performance liquid chromatographic method (RP-HPLC) with ultraviolet detection has been developed for the determination of moclobemide and its metabolites, p-chloro-N-(-2-morpholinoethyl)benzamide N'-oxide (Ro 12-5637) and p-chloro-N-[2-(3-oxomorpholino)ethyl]-benzamide (Ro 12-8095), in human plasma. The assay was performed after single liquid-liquid extraction with dichloromethane at alkaline pH using phenacetin as the internal standard. Chromatographic separation was performed on a C(18) column using a mixture of acetonitrile and water (25:75, v/v), adjusted to pH 2.7 with ortho-phosphoric acid, as mobile phase. Spectrophotometric detection was performed at 239 nm. The method has been validated for accuracy, precision, selectivity, linearity, recovery and stability. The quantification limit for moclobemide and Ro 12-8095 was 10 ng/mL, and for Ro 12-5637 was 30 ng/mL. Linearity of the method was confirmed for the range 20-2500 ng/mL for moclobemide (r = 0.9998), 20-1750 ng/mL for Ro 12-8095 (r = 0.9996) and 30-350 ng/mL for Ro 12-5637 (r = 0.9991). Moreover, within-day and between-day precisions and accuracies of the method were established. The described method was successfully applied in pharmacokinetic studies of parent drug and its two metabolites after a single oral administration of 150 mg of moclobemide to 20 healthy volunteers.  相似文献   

18.
A rapid, simple, sensitive and selective LC‐MS/MS method has been developed and validated for quantification of nifedipine (NF) and atenolol (AT) in human plasma (250 μL). The analytical procedure involves a one‐step liquid–liquid extraction method using carbamazepine as an internal standard (IS). The chromatographic resolution was achieved on a Hypurity Advance C18 column using an isocratic mobile phase consisting of 5 mm ammonium acetate–acetonitrile (15:85, v/v) at flow rate of 1.0 mL/min. The LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. The total run time of analysis was 2 min and elution of NF, AT and IS occurred at 0.79, 1.04 and 0.76 min, respectively. A detailed method validation was performed as per the FDA guidelines and the standard curves found to be linear in the range of 1.02–101 ng/mL for NF and 5.05–503 ng/mL for AT, with a coefficient of correlation of ≥0.99 for both the drugs. NF and AT were found to be stable in a battery of stability studies, viz. bench‐top, auto‐sampler and repeated freeze–thaw cycles. The validated assay method was successfully applied to a pharmacokinetic study in humans. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Levonorgestrel and quinestrol, commonly known as EP‐1, has long been used in the control of wild rodents. Up to the present time, however, no method for simultaneous quantification of levonorgestrel and quinestrol in rat plasma has been reported. In the present study, a sensitive reverse‐phase high‐performance liquid chromatography with ultraviolet detection (RP‐HPLC‐UV) method for quantification of levonorgestrel and quinestrol in rat plasma has been developed. It uses a Kromasil ODS C18 column and acetonitrile‐0.1% formic acid (85 : 15, v/v) mobile phase at ambient temperature. The plasma sample was prepared by hexane–isoamyl alcohol extraction (90 : 10, v/v). The flow rate and detection wavelength were 1.0 mL/min and 230 nm. The correlation coefficients were greater than 0.9995 within 0.08–50 μg/mL for levonorgestrel and 0.12–50 μg/mL for quinestrol, and the limits of detection were 0.02 and 0.05 μg/mL for levonorgestrel and quinestrol, respectively. Average recovery ranged from 92.5 to 96.3% and inter‐day RSDs were less than 7.56%. This method can be applied to the further pharmacokinetic study of levonorgestrel and quinestrol in rat plasma. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
An improved, simple and highly sensitive LC‐MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat‐d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid–liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1–6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra‐ and inter‐day precisions (%RSD) were within 1.29–9.19 and 2.85–7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号