首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The interactions between dodecyl trimethylammonium bromide (C12TAB) and two samples of DNA with widely differing molecular weights have been studied using surface tension and neutron reflectometry. Neutron reflection data show that the surfactant and polymer are adsorbed together in a highly cooperative fashion over a 1000-fold change in surfactant concentration. Furthermore, the shorter DNA fragments adsorb with C12TAB as trilayers at higher surfactant concentrations, with overall layer thicknesses of 65-70 A. The high molecular weight DNA, however, shows only approximate monolayer adsorption with thicknesses varying from 19 to 26 A over the entire range of C12TAB concentrations. The difference in behavior between the different samples is believed to be a result of the rigid double helical structure of DNA which makes the formation of bulk phase polymer/micelle aggregates much less favorable for the short fragments. The resulting increase in the critical aggregation concentration (CAC) then leads to the adsorption of additional surfactant/polymer complex to the underside of the initial stable surface active DNA/C12TAB complex. Comparison with previous results obtained for synthetic polyelectrolytes shows that DNA/C12TAB complexes are not capable of reducing the surface tensions to the extent that other mixtures such as the poly(styrene sulfonate)/C12TAB mixtures do. A possible reason for this is the high rigidity of DNA combined with the fact that its hydrophobic moieties are positioned within the double helix so that the external molecule is largely hydrophilic.  相似文献   

2.
A number of features of the adsorption of alkyl trimethylammonium bromides with nc=10,12,14, and 16 at the air/water interface were studied. First, the adsorption isotherms were calculated from experimental surface tension vs concentration curves by means of the Gibbs equation. Second, a novel method was used to estimate the adsorption free energy change. From the analysis of these data it was concluded that the hydrophobic driving force for the adsorption first increases with increasing adsorbed amount and then levels off in a plateau, which holds true for all four homologues. This peculiar behavior was interpreted by the formation of a thin liquid-like alkane film at the air/water interface once a certain adsorbed amount is exceeded. The hydrophobic contribution to the standard free energy change of adsorption was compared with those values previously determined for alkyl sulfate homologues. This comparison suggests that the alkyl trimethylammonium type surfactants behave as if their alkyl chain was approximately one methylene group shorter than those of the corresponding alkyl sulfates.  相似文献   

3.
Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes grown by surface-initiated polymerization from a polyanionic macroinitiator adsorbed at the sapphire-water interface have been used as a substrate to study the interaction between the weak polyelectrolyte PDMAEMA and the oppositely charged surfactant sodium dodecyl sulfate (SDS) with neutron reflectivity. At pH 3, multilayered structures are formed in which the interlayer separation (~40 ?) is comparable to the dimensions of a SDS bilayer or micelle. The number of repeating layers that form depends on brush thickness, ranging from three layers in a relatively thin brush (5 nm dry thickness) to 15 layers in a relatively thick brush (17 nm dry thickness). In the 5 nm brush, addition of 0.01 mM SDS leads to brush deswelling, and the distinct layered structure only forms when the SDS concentration reaches 1 mM, with the brush reswelling slightly at 5 mM SDS. In the thicker (11 and 17 nm) brushes, distinct layered structures form at 0.1 mM SDS, in which the molar SDS/DMAEMA ratio is greater than unity. Exposing the 17 nm brush/SDS complex to 1 M NaNO(3) results in the complete removal of the surfactant and recovery of the bare brush structure. At pH 9, there is significant surfactant uptake by the brush, but no multilayer structures are formed. The brush presents a high concentration of DMAEMA segments that are localized to within 500-1000 ? of the sapphire interface. At pH 9 the high local concentration of hydrocarbon segments in the brush screens the hydrophobic tails of the surfactants from the unfavorable interaction with water, leading to significant surfactant uptake by the brush. At pH 3 the high local concentration of charges inside the brush additionally screens the repulsive interactions between the surfactant headgroups, making surfactant uptake even more favorable, leading to the formation of multilayered surfactant aggregates confined within the brush.  相似文献   

4.
Nanodiscs are self-assembled nanostructures composed of a belt protein and a small patch of lipid bilayer, which can solubilize membrane proteins in a lipid bilayer environment. We present a method for the alignment of a well-defined two-dimensional layer of nanodiscs at the air-water interface by careful design of an insoluble surfactant monolayer at the surface. We used neutron reflectivity to demonstrate the feasibility of this approach and to elucidate the structure of the nanodisc layer. The proof of concept is hereby presented with the use of nanodiscs composed of a mixture of two different lipid (DMPC and DMPG) types to obtain a net overall negative charge of the nanodiscs. We find that the nanodisc layer has a thickness or 40.9 ± 2.6 ? with a surface coverage of 66 ± 4%. This layer is located about 15 ? below a cationic surfactant layer at the air-water interface. The high level of organization within the nanodiscs layer is reflected by a low interfacial roughness (~4.5 ?) found. The use of the nanodisc as a biomimetic model of the cell membrane allows for studies of single membrane proteins isolated in a confined lipid environment. The 2D alignment of nanodiscs could therefore enable studies of high-density layers containing membrane proteins that, in contrast to membrane proteins reconstituted in a continuous lipid bilayer, remain isolated from influences of neighboring membrane proteins within the layer.  相似文献   

5.
Neutron reflectivity (NR) was used to study the adsorption of human serum albumin and human fibrinogen on quartz. The proteins were individually and sequentially adsorbed from heavy water and heavy water/methanol mixtures at pH 4 and 7.0. The technique allows for the subnanometer resolution of the adsorbed layer thickness and gross morphology. Under the conditions of our measurements we found that fibrinogen formed a distinct layer that we interpret as a mat of the protein three layers thick whereas albumin formed only diffuse layers. The adsorption pattern of the two proteins changed radically when one protein was adsorbed on top of the other (previously adsorbed). In general our measurements indicate that the adsorbed protein layers on quartz are rather loosely bound and that these layers, incorporating as much as 80% water, extend further into the bulk fluid than might have been expected.  相似文献   

6.
The adsorption of amyloid beta-peptide at hydrophilic and hydrophobic modified silicon-liquid interfaces was characterized by neutron reflectometry. Distinct polymeric films were used to obtain noncharged (Formvar), negatively (sodium poly(styrene sulfonate)) and positively charged (poly(allylamine hydrochloride)) hydrophilic as well as hydrophobic surfaces (polystyrene and a polysiloxane-dodecanoic acid complex). Amyloid beta-peptide was found to adsorb at positively charged hydrophilic and hydrophobic surfaces, whereas no adsorbed layer was detected on hydrophilic noncharged and negatively charged films. The peptide adsorbed at the positively charged film as patches, which were dispersed on the surface, whereas a uniform layer was observed at hydrophobic surfaces. The thickness of the adsorbed peptide layer was estimated to be approximately 20 A. The peptide formed a tightly packed layer, which did not contain water. These studies provide information about the affinity of the amyloid beta-peptide to different substrates in aqueous solution and suggest that the amyloid fibril formation may be driven by interactions with surfaces.  相似文献   

7.
The dynamic and equilibrium surface tensions of C(n)TAB solutions for n = 12, 14, and 16 are studied using ring and bubble pressure tensiometry. Together with respective literature values, including neutron reflectivity and dilational surface rheology measurements, the experimental data are analyzed on the basis of two theoretical models, the Frumkin model and a modified reorientation model that takes into account an intrinsic compressibility of adsorbed surfactant molecules. It turns out that this new reorientation model, earlier applied to nonionic surfactant adsorption layers, is also applicable to ionic surfactants and superior to the Frumkin isotherm. All adsorption properties of one particular surfactant can be described by a single set of model parameters.  相似文献   

8.
The adsorption of mixed solutions containing an anionic polyelectrolyte, carboxymethylchitosan (CMCH), and cationic gemini surfactants, alkanediyl-bis-(dimethyldodecyl-ammonium bromide) (C12-s-C12, s?=?2, 6, 12), has been investigated by surface tension method. The oppositely charged polyelectrolyte and the surfactants co-adsorb at the surface to form highly surface-active complexes. Combining the surface tension data with the Gibbs equation, it is referred that the surface layers of the mixed solutions have the multi-level structure, which includes the sublayers beneath an outermost layer. The gemini surfactant spacer with different length takes different conformations in the surface layers. The salt (NaBr) effects on the adsorption of the mixtures have also been studied. The spacer length of C12-s-C12 influences the responses of CMCH/C12-s-C12 mixtures to the salt effects. The comprehensive salt effects depend on the competition between the salt-enhancing effect and the salt-weakening effect.  相似文献   

9.
We use optical reflectometry and surface pressure techniques to measure co-adsorption of the anionic surfactant sodium dodecyl sulfate (SDS) and the protein lysozyme at the air-aqueous interface. We observe lysozyme/SDS co-adsorption behavior in two different buffers for which solution-phase binding data are available in the literature. The co-adsorption of lysozyme/SDS complexes is controlled by the mode of protein/surfactant binding that occurs in solution. In a pH 5.0 acetate buffer, the extent of co-adsorption is weakly dependent on SDS concentration throughout the specific and transitional binding regimes. In a pH 6.9 phosphate buffer, the extent of co-adsorption is weakly dependent on SDS concentration in the specific binding regime, but it increases dramatically, giving rise to multilayer co-adsorption, in the transitional binding regime. In both buffers, the extent of co-adsorption dramatically decreases in the cooperative binding regime. Lysozyme/SDS co-adsorption is strongly influenced by kinetically trapped non-equilibrium adsorbed layer states, such that adsorbed amounts are markedly path-dependent. Surface pressure measurements by themselves do not capture the variations in adsorption in the different binding regimes, nor do they capture the path-dependency of co-adsorption.  相似文献   

10.
The adsorption and complexation of polystyrene sulfonate (a highly charged anionic polyelectrolyte) and dodecyltrimethylammonium bromide (a cationic surfactant) at the air-water interface can lead to interfacial gels that strongly influence foam-film drainage and stability. The formation and characteristics of these gels have been studied by combining surface tension, ellipsometry, and foam-film drainage experiments. Simultaneously, the solution electromotive force is measured and used to track the polymer-surfactant interactions in the bulk solution. We find that surface gelation occurs above the critical aggregation concentration in solution but before bulk precipitation of the polymer-surfactant complexes. Furthermore, we reveal that strong readsorption of polymer-surfactant complexes occurs during the resolubilization of the precipitated complexes at high surfactant concentrations (i.e., >critical micelle concentration). Seemingly overlooked in the past, this readsorption significantly influences the surface rheological properties and foam-film drainage of these systems.  相似文献   

11.
Conformational orientations of a mouse monoclonal antibody to the beta unit of human chorionic gonadotrophin (anti-beta-hCG) at the hydrophilic silicon oxide/water interface were investigated using atomic force microscopy (AFM) and neutron reflectivity (NR). The surface structural characterization was conducted with the antibody concentration in solution ranging from 2 to 50 mg.L(-1) with the ionic strength kept at 20 mM and pH = 7.0. It was found that the antibody adopted a predominantly "flat-on" orientation, with the Fc and two Fab fragments lying flat on the surface. The AFM measurement revealed a thickness of 30-33 A of the layer formed in contact with 2 mg.L(-1) antibody in water, but, interestingly, the flat-on antibody molecules formed small nonuniform clusters equivalent to 2-15 antibody molecules. Parallel AFM scanning in air revealed even larger surface clusters, suggesting that surface drying induced further aggregation. The AFM study thus demonstrated that the interaction between protein and the hydrophilic surface is weak and indicated that surface aggregation can be driven by the attraction between neighboring protein molecules. NR measurements at the solid/water interface confirmed the flat-on layer orientation of adsorbed molecules over the entire concentration range studied. Thus, at 2 mg.L(-1), the adsorbed antibody layer was well represented by a uniform layer with a thickness of 40 A. This value is thicker than the 30-33 A observed from AFM, suggesting possible layer compression caused by the tip tapping. An increase in the antibody concentration to 10 mg.L(-1) led to increasing surface adsorption. The corresponding layer structure was well represented by a three-layer model consisting of an inner sublayer of 10 A, a middle sublayer of 30 A, and an outer sublayer of 25 A, with the protein volume fractions in each sublayer being 0.22, 0.42, and 0.10, respectively. The structural transition can be interpreted as a twisting and tilting of segments of the adsorbed molecules, driven by an electrostatic repulsion between them that increases with the surface packing density. Hindrance of antigen access to antibody binding sites, resulting from the change in surface packing, can account for the decrease in antigen binding capacity (AgBC) with increasing surface density of the antibody that is observed.  相似文献   

12.
Neutron reflectivity experiments conducted on self-assembled monolayers (SAMs) against polar (water) and nonpolar (organic) liquid phases reveal further evidence for a density reduction at hydrophobic-hydrophilic interfaces. The density depletion is found at the interface between hydrophobic dodecanethiol (C12) and hexadecanethiol (C16) SAMs and water and also between hydrophilic SAMs (C12/C11OH) and nonpolar fluids. The results show that the density deficit of a fluid in the boundary layer is not unique to aqueous solid-liquid interfaces but is more general and correlated with the affinity of the liquid to the solid surface. In water the variation of pH has only minor influence, while different electrolytes taken from the Hofmeister series seem to increase the depletion. On hydrophobic SAMs an increase in density depletion with temperature was observed, in agreement with Monte Carlo simulations performed on corresponding model systems. The increase in the water density depletion layer is governed by two effects: the surface energy difference between water and the substrate and the chemical potential of the aqueous phase.  相似文献   

13.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

14.
Cationic Gemini surfactant at the air/water interface   总被引:2,自引:0,他引:2  
The surface properties and structures of a cationic Gemini surfactant with a rigid spacer, p-xylyl-bis(dimethyloctadecylammonium bromide) ([C(18)H(37)(CH(3))(2)N(+)CH(2)C(6)H(4)CH(2)N(+)(CH(3))(2)C(18)H(37)],2Br(-), abbreviated as 18-Ar-18,2Br(-1)), at the air/water interface were investigated. It is found that the surface pressure-molecular area isotherms observed at different temperatures do not exhibit a plateau region but display an unusual "kink" before collapse. The range of the corresponding minimum compressibility and maximum compressibility modulus indicates that the monolayer is in the liquid-expanded state. The monolayers were transferred onto mica and quartz plates by the Langmuir-Blodgett (LB) technique. The structures of monolayers at various surface pressures were studied by atomic force microscopy (AFM) and UV-vis spectroscopy, respectively. AFM measurements show that at lower surface pressures, unlike the structures of complex or hybrid films formed by Gemini amphiphiles with DNA, dye, or inorganic materials or the Langmuir film formed by the nonionic Gemini surfactant, in this case network-like labyrinthine interconnected ridges are formed. The formation of the structures can be interpreted in terms of the spinodal decomposition mechanism. With the increase of the surface pressure up to 35 mN/m, surface micelles dispersed in the network-like ridges gradually appear which might be caused by both the spinodal decomposition and dewetting. The UV-vis adsorption shows that over the whole range of surface pressures, the molecules form a J-aggregate in LB films, which implies that the spacers construct a pi-pi aromatic stacking. This pi-pi interaction between spacers and the van der Waals interaction between hydrophobic chains lead to the formation of both networks and micelles. The labyrinthine interconnected ridges are formed first because of the rapid evaporation of solvent during the spreading processes; with increasing surface pressure, some of the alkyl chains reorient from tilting to vertical, forming surface micelles dispersed in the network-like ridges due to the strong interaction among film molecules.  相似文献   

15.
The adsorption of crotonaldehyde from aqueous 1 M KCl has been studied by means of differential capacity, zero charge potential and maximum surface tension measurements. The adsorption has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. Different possible molecular orientations are suggested depending on charge and coverage. The contribution of the molecular dipole moment and differences in polarizability between the adsorbate and the solvent are considered.  相似文献   

16.
The adsorption of tetramethylthiourea was studied by means of differential capacity measurements. Various parameters have been obtained by back-integration. The extent of orientation of the organic molecule has been estimated from the experimental adsorption potential shift by subtracting the contribution due to adsorbed water molecules calculated according to the Bockris-Habib model. Adsorption of tetramethylthiourea has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. A scenario is proposed where different possible orientations are suggested, depending on charge sign and coverage. Such a change in orientation has been interpreted in terms of the electronic polarization effect.  相似文献   

17.
The adsorption of the surface-active protein hydrophobin, HFBII, and the competitive adsorption of HFBII with the cationic, anionic, and nonionic surfactants hexadecyltrimethylammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), has been studied using neutron reflectivity, NR. HFBII adsorbs strongly at the air-water interface to form a dense monolayer ~30 ? thick, with a mean area per molecule of ~400 ?(2) and a volume fraction of ~0.7, for concentrations greater than 0.01 g/L, and the adsorption is independent of the solution pH. In competition with the conventional surfactants CTAB, SDS, and C(12)E(6) at pH 7, the HFBII adsorption totally dominates the surface for surfactant concentrations less than the critical micellar concentration, cmc. Above the cmc of the conventional surfactants, HFBII is displaced by the surfactant (CTAB, SDS, or C(12)E(6)). For C(12)E(6) this displacement is only partial, and some HFBII remains at the surface for concentrations greater than the C(12)E(6) cmc. At low pH (pH 3) the patterns of adsorption for HFBII/SDS and HFBII/C(12)E(6) are different. At concentrations just below the surfactant cmc there is now mixed HFBII/surfactant adsorption for both SDS and C(12)E(6). For the HFBII/SDS mixture the structure of the adsorbed layer is more complex in the region immediately below the SDS cmc, resulting from the HFBII/SDS complex formation at the interface.  相似文献   

18.
The adsorption of surface-active protein hydrophobin, HFBII, and HFBII/surfactant mixtures at the solid-solution interface has been studied by neutron reflectivity, NR. At the hydrophilic silicon surface, HFBII adsorbs reversibly in the form of a bilayer at the interface. HFBII adsorption dominates the coadsorption of HFBII with cationic and anionic surfactants hexadecyltrimethyl ammonium bromide, CTAB, and sodium dodecyl sulfate, SDS, at concentrations below the critical micellar concentration, cmc, of conventional cosurfactants. For surfactant concentrations above the cmc, HFBII/surfactant solution complex formation dominates and there is little HFBII adsorption. Above the cmc, CTAB replaces HFBII at the interface, but for SDS, there is no affinity for the anionic silicon surface hence there is no resultant adsorption. HFBII adsorbs onto a hydrophobic surface (established by an octadecyl trimethyl silane, OTS, layer on silicon) irreversibly as a monolayer, similar to what is observed at the air-water interface but with a different orientation at the interface. Below the cmc, SDS and CTAB have little impact upon the adsorbed layer of HFBII. For concentrations above the cmc, conventional surfactants (CTAB and SDS) displace most of the HFBII at the interface. For nonionic surfactant C(12)E(6), the pattern of adsorption is slightly different, and although some coadsorption at the interface takes place, C(12)E(6) has little impact on the HFBII adsorption.  相似文献   

19.
The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.  相似文献   

20.
A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号